

13585 N.E. Whitaker Way • Portland, OR 97230 Phone (503)255-5050 • Fax (503)255-0505 www.montrose-env.com

Project No. 5702

SOURCE EVALUATION REPORT

Bullseye Glass Company Portland, Oregon

Glass Furnace T7 Baghouse BH-1 (Inlet & Outlet) Total Chromium & Hexavalent Chromium Supplement to Report Issued June 9, 2016

> Test Dates: April 26 – 29, 2016 Report Issued: July 8, 2016

Test Site: Bullseye Glass Company 3722 SE 21st Ave Portland, OR 97202

Report ID: HORIZON ENGINEERING 16-5702

TABLE OF CONTENTS

1.	QUALITY STATEMENT	<u>Page #</u> 4
2 .	CERTIFICATION	5
3.	INTRODUCTION	6
4.	SUMMARY OF RESULTS	8
5.	SOURCE DESCRIPTION AND OPERATION	13
6.	SAMPLING AND ANALYTICAL PROCEDURES	14
7.	DISCUSSION	15

APPENDIX		
Abbreviations, Acronyms & Nomenclature	19	
Total Chromium & Hexavalent Chromium		
Results and Example Calculations	23	
Field Data	37	
Sample Recovery Field Data & Worksheets	55	
Blank Corrections	60	
Laboratory Results, Worksheets & COC	61	
Traverse Point Locations	74	
Calibration Information		
Meter Box	80	
Calibration Critical Orifices	84	
Standard Meter	86	
Pitots	87	
Thermocouples and Indicators	91	
Peristaltic Pump Calibration	103	
Barometer	104	
QA/QC Documentation		
Procedures	106	
Correspondence		
Source Test Plan and Correspondence	110	
Quality Assurance Documentation		
MAQS QSTI/QI Certification Dates	130	
Qualified Individual (QI) Certificates	131	
QMS Statements of Conformance	137	
Personnel Qualifications	151	

1. QUALITY STATEMENT

I certify that this testing was performed in accordance with Montrose Air Quality Services (MAQS) Quality Assurance Manual (QAM).

Thomas Rhodes, EIT, QSTI District Manager

16 Signature Date

Name, Telephone Number and E-mail address of AETB Horizon Engineering, an affiliate of Montrose Environmental 503-255-5050 trhodes@montrose-env.com

Name and E-mail Address of the Qualification Exam Provider Source Evaluation Society (SES) gstiprogram@gmail.com

2. CERTIFICATION

2.1 Project Manager

I hereby certify that the test detailed in this report, to the best of my knowledge, was accomplished in conformance with applicable rules and good practices. The results submitted herein are accurate and true to the best of my knowledge.

Name: Jason French, QSTI 29/16 Signature Date

2.2 Senior Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: Andy Vella, PE, QSTI 7/6/2016 Date ___ Signature

2.3 Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: Michael E. Wallace, PE

____ Date <u>6/30/16</u> la Signature

3. INTRODUCTION

3.1 Test Site:Bullseye Glass Company3722 SE 21st Ave
Portland, OR 97202

3.2 Mailing Address: Same as above

3.3 Test Log:

Baghouse, BH-1, Inlet and Outlet: Cr & Cr ⁺⁶				
Test Date	Run No.	Test Time		
Inlet				
April 26 – 27, 2016	1	17:30 (4/26) - 09:30 (4/27)		
April 27 – 28, 2016	2	17:30 (4/27) - 09:30 (4/28)		
April 28 – 29, 2016	3	17:00 (4/28) - 09:00 (4/29)		
Outlet				
April 28 – 29, 2016	3	17:00 (4/28) – 09:00 (4/29)		

Summary: Three runs of Inlet testing for Total Chrome and Cr^{+6} . One run on the Outlet was performed simultaneously during Inlet testing of Run 3 for Total Cr and Cr^{+6} .

This report supplements our June 9, 2016 report for source testing Bullseye Glass Company's Glass Furnace T7 controlled by Baghouse BH-1 and includes full data reduction of the total chromium and hexavalent chromium testing conducted April 26 – 29, 2016.

3.4 Test Purpose: Evaluate chromium emissions and potentially determine a maximum allowable chromium III usage rate."

3.5 Background Information: None

3.6 Participants:

Montrose Air Quality Services Personnel:

Jason French, QSTI, Team Leader, Calculations, and Report Review

Chris Hinson, QSTI, Field Technician

Joe Heffernan, QSTI, Field Technician

John Lewis, QSTI, Field Technician

Mihai Voivod, QSTI, Field Technician

Brett Sherwood, QI, Field Technician

Patrick Todd, Field Technician

Brandon Crawford, Field Technician

Josh Muswieck, Field Technician

Paul Berce, Field Technician

Sleight Halley, Field Technician

Thomas Rhodes, EIT, QSTI, Project Coordinator & Report Review

Michael E. Wallace, PE, Data Reduction, Calculations and QA/QC

Andy Vella, PE, QSTI, Senior Report Review

Mauri Fabio, Technical Writer

Test Arranged by: Dan Schwoerer, Bullseye Glass Company Observers:

Plant Personnel: Dan Schwoerer, Bullseye Glass Company

Consultants: John Browning, Bridgewater Group

Agency Personnel: Michael Eisele, PE, ODEQ, Mark Ludwiczak,

ODEQ; Zach Hedgepeth, US EPA

Test Plan Sent to: Michael Eisele, PE & George Davis, ODEQ

4. SUMMARY OF RESULTS

4.1 Tables of Results:

Table 1

Baghouse BH-1 Inlet

Total Chro	omium & He	xavalent Chromi	um Emissio	n Results
lata: Anril 26 - 29	Unite	Run 1	Run 2	Run 3

Test Date: April 26 – 29,	Units	Run 1	Run 2	Run 3	Average
2016 Start Time		17:30 (4/26)	17:30 (4/27)	17:00 (4/28)	
End Time			09:30 (4/28)		
Sampling Time	minutes	760	890	880	843
Sampling Results					
Total Chromium	mg/dscm	0.32	0.23	0.11	0.22
	ng/dscm	316,500	233,800	108,000	219,400
Rate	lb/hr	0.0005	0.0003	0.0002	0.0003
	lb/ton-glass	0.015	0.010	0.004	0.010
	lb/ton-Chromium	2.00	1.34	0.60	1.31
Sample Weight	mg	1.81	0.979	0.440	1.08
Hexavalent Chromium	mg/dscm	0.31	0.25	0.11	0.22
	ng/dscm	309,700	247,300	105,500	220,800
Rate	lb/hr	0.0005	0.0004	0.0002	0.0003
	lb/ton-glass	0.014	0.010	0.004	0.010
	lb/ton-Chromium	1.96	1.42	0.58	1.32
Sample Weight	mg	1.77	1.04	0.430	1.08
Sample Volume	dscf	201.8	147.9	143.8	164.5
Flow Rate (Actual)	acf/min	520	470	470	490
Flow Rate (Standard)	dscf/min	430	390	370	400
Temperature	°F	167	163	181	171
Moisture	%	0.80	2.3	3.2	2.1
Percent Isokinetic	%	93	93	95	94

Table 2

Baghouse BH-1 Outlet

Total Chromium & Hexavalent Chromium Emission Results

(Measure	d Values)	
Test Date: April 28 – 29, 2016	Units	Run 3 ¹
Start Time		17:00 (4/28)
End Time		09:00 (4/29)
Sampling Time	minutes	910
Sampling Results		
Total Chromium	mg/dscm	0.029
	ng/dscm	29,100
Rate	lb/hr	0.00005
	lb/ton-glass	0.0016
	lb/ton-Chromium	0.213
Sample Weight	mg	0.102
Hexavalent Chromium	mg/dscm	0.028
	ng/dscm	28,200
Rate	lb/hr	0.00005
	lb/ton-glass	0.0015
	lb/ton-Chromium	0.206
Sample Weight	mg	0.099
Sample Volume	dscf	123.9
Flow Rate (Actual)	acf/min	580
Flow Rate (Standard)	dscf/min	500
Temperature	°F	140
Moisture	%	1.3
Percent Isokinetic	%	95

¹ One run on the outlet was performed simultaneously during Inlet testing of Run 3 for Total Cr and Cr+6.

Table 3

Baghouse BH-1 Outlet

Total Chromium & Hexavalent Chromium Emission Results

(Calculated Values, Estimated Based on PM Removal)

Test Date: April 26 – 29, 2016	Units	Run 1	Run 2	Run 3	Average
PM Removal Efficiency	%	99.29	99.56	99.57	99.47
Total Chromium	ng/dscm	2,200	1,100	500	1,300
Rate	lb/hr	0.0000036	0.0000015	0.0000007	0.0000019
	lb/ton-glass	0.00010	0.00004	0.00002	0.00006
	ib/ton-Chromium	0.0142	0.0059	0.0026	0.0076
Hexavalent Chromium	ng/dscm	2,200	1,100	500	1,300
Rate	lb/hr	0.0000035	0.0000016	0.0000006	0.0000019
	lb/ton-glass	0.00010	0.00005	0.00002	0.00006
	lb/ton-Chromium	0.014	0.006	0.003	0.008

Table 4

Baghouse BH-1 Inlet & Outlet

Process/Production Data		÷ .			
Test Date: April 26 - 29, 2016	Units	Run 1	Run 2	Run 3	Average
Chrome Addition Rate	lb/batch	8.1	8.1	8.1	8.1
	ton/hr	0.000253	0.000253	0.000253	0.000253
Glass Production Rate	lb/batch	1,111.81	1,111.81	1,111.81	1,111.81
	ton/hr	0.0347	0.0347	0.0347	0.0347

4.2 Discussion of Method Errors and Quality Assurance Procedures: This table is taken from a paper entitled "Significance of Errors in Stack Sampling Measurements," by R.T. Shigehara, W.F. Todd and W.S. Smith. It summarizes the maximum error expressed in percent, which may be introduced into the test procedures by equipment or instrument limitations.

Measurement	% Max Error
Stack Temperature Ts	1.4
Meter Temperature Tm	1.0
Stack Gauge Pressure Ps	0.42
Meter Gauge Pressure Pm	0.42
Atmospheric Pressure Patm	0.21
Dry Molecular Weight Md	0.42
Moisture Content Bws (Absolute)	1.1
Differential Pressure Head ΔP	10.0
Orifice Pressure Differential ΔH	5.0
Pitot Tube Coefficient Cp	2.4
Orifice Meter Coefficient Km	1.5
Diameter of Probe Nozzle Dn	0.80

4.2.1 <u>Manual Methods</u>: QA procedures outlined in the test methods were followed, including equipment specifications and operation, calibrations, sample recovery and handling, calculations and performance tolerances.

On-site quality control procedures include pre- and post-test leak checks on the sampling system and pitot lines. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run is repeated. The results of the leak checks for the test runs are on the Field Data sheets.

Thermocouples used to measure the exhaust temperature are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed. Thermocouples must agree within ±2°F with the reference thermometer. Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started or readings are taken. Nozzles are inspected for nicks or dents and pitots are examined before and after each use to confirm that they are still aligned. The results were within allowable tolerances. Pre- and post-test calibrations on the meter boxes are included with the report along with semi-annual calibrations of critical orifices, pitots, nozzles, and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators), as specified by ODEQ.

4.2.2 Audit Requirement: The EPA Stationary Source Audit Sample Program was restructured and promulgated on September 30, 2010 and was made effective 30 days after that date. The Standard requires that the Facility or their representative must order audit samples if they are available, with the exception of the methods listed in 40 CFR 60, 60.8(g)(1). The TNI website is referred to for a list of available accredited audit Providers and audits (www.nelac-institute.org/ssas/). If samples are not available from at least two accredited Providers they are not required. Currently, accredited Providers offer audit samples for EPA Methods 6, 7, 8, 12, 13A, 13B, 26, 26A, 29 and 101A. Based on the above, Bullseye Glass is not required to obtain audit samples for this test program.

5. SOURCE DESCRIPTION AND OPERATION

5.1 Process and Control Device Description and Operation:

Single natural gas fired colored art glass manufacturing tank furnace with an approximate operating capacity of 1,550 pound per batch; installed pre-2007.

Unspecified manufacturer baghouse filtration unit consisting of 14 filter bags and a design inlet gas flow rate of 1,000 acfm.

5.2 Test Ports:

5.2.1 Test Duct Characteristics:

Source: Baghouse, BH-1, Inlet

Source: Baghouse, BH-1, Outlet

Construction: Steel	Construction: Steel
Shape: Circular	Shape: Circular
Size: 12 inches inside diameter	Size: 12.375 (E), 12.25 (W) inches inside
Orientation: Horizontal	diameter
Flow straighteners: None	Orientation: Vertical
Extension: None	Flow straighteners: None
Cyclonic Flow: None expected	Extension: None
Meets EPA Method 1 Criteria: Yes	Cyclonic Flow: None expected
	Meets EPA Method 1 Criteria: Yes

5.3 Operating Parameters: See Production/Process Data section of Appendix.

5.4 Process Startups/Shutdowns or Other Operational Changes During Tests: Process was continuous during testing.

6. SAMPLING AND ANALYTICAL PROCEDURES

6.1 Sampling Procedures:

6.1.1 <u>Sampling and Analytical Methods</u>: Testing was in accordance with procedures and methods listed in the Source Test Plan dated March 24 & April 8 & 25, 2016 (see Correspondence Section in the Appendix), including the following: EPA methods in Title 40 Code of Federal Regulations Part 60 (40 CFR 60), Appendix A, from the Electronic Code of Federal Regulations (www.ecfr.gov), January, 2014; Oregon Department of Environmental Quality (ODEQ) methods in Source Sampling Manual Volume 1, April, 2015.

Baghouse, BH-1 – Inlet & Outlet

Flow Rate:	EPA Methods 1 and 2 (S-type pitot w/ isokinetic
CO ₂ and O ₂ :	traverses) Assume ambient molecular weight 28.96
Moisture:	EPA Method 4 (incorporated w/ isokinetic or sampling
	methods)
Total Cr & Cr ⁺⁶ :	SW-846 Method 0061 (isokinetic recirculatory
	impinger train technique with Cr ⁺⁶ analysis by IC with
	Post-Column Derivatization-Visible Absorption and
	Total Cr analysis by ICP-MS)

6.1.2 <u>Sampling Notes</u>: One run for Outlet testing was performed simultaneously during Inlet testing of Run 3 for Total Cr and Cr⁺⁶.

6.1.3 Laboratory Analysis:

AnalyteLaboratoryTotal Chromium &Chester LabNet, Tigard, ORHexavalent Chromium

6.2 MAQS Test Equipment:

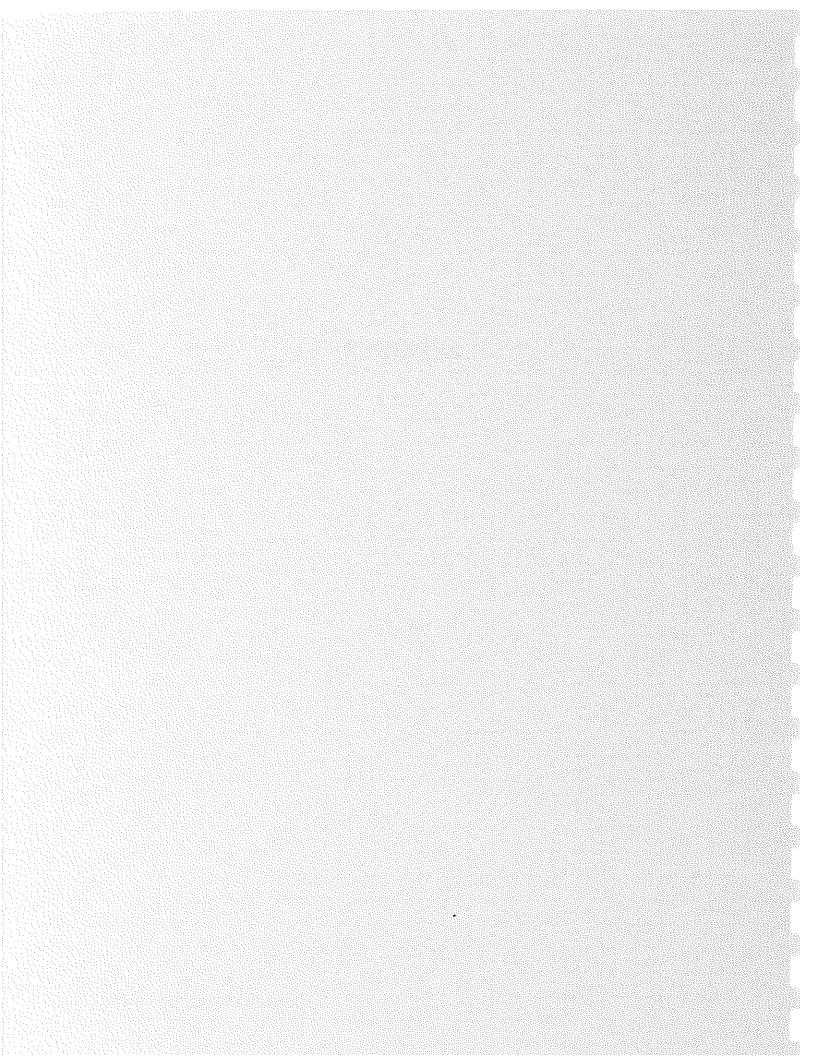
6.2.1 Manual Methods:

Equipment Name	Identification
Isokinetic Meter Boxes	CAE Express, Horizon No. 2 & No. 29
Probe Liner	Teflon
Pitots and Thermocouples	2-1, 2-2, I- 20, I-35, JF, MV, PT, JH, BS,
	JM, JL, BC, CH, PLB, SH
Barometer	Calibrated Barometer

7. DISCUSSION

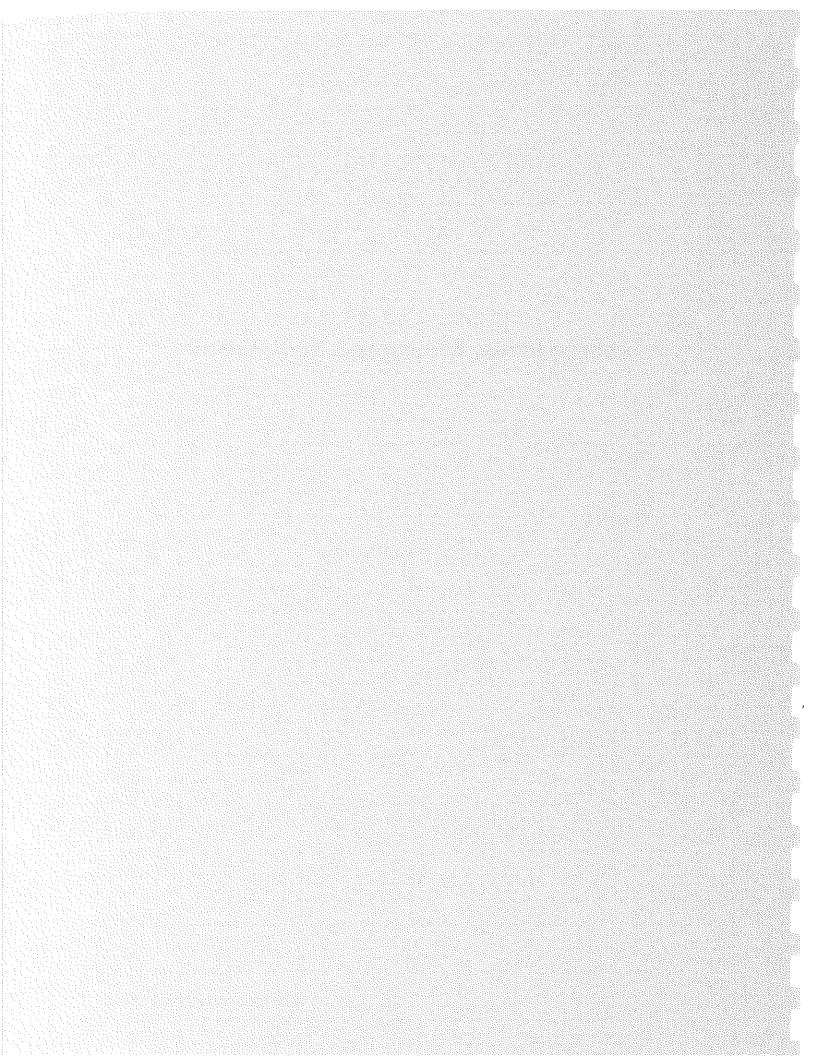
The operation of Baghouse BH1 on Glass Furnace T7 was a pilot configuration. The purpose of this testing was to evaluate emissions and potentially determine a maximum allowable chromium III usage rate based on potential chromium VI emissions pursuant to temporary rules provided in OAR 340-244-9040. However, the hexavalent chromium emissions data received and a subsequent evaluation of the operating parameters during the test indicate the emissions data is likely biased high and is not representative of past or future operating conditions.

The data shows significant variation of potential chromium emissions across the three test runs indicating inconclusive results. In addition, chromium VI was detected in some of the samples at concentrations above the total chromium results indicating potential interference.


Further, the pilot configuration of the baghouse included the introduction of ambient air (containing approximately 21% oxygen) into the furnace exhaust stream to lower exhaust gas temperatures. This was done to protect the Teflon probes required by Method 0061 and to protect the filter media provided in the baghouse. Because the processing of chromium containing raw materials was not allowed prior to the source test, "normal" operating conditions had not been established and testing proceeded to collect pilot level emission data.

Introducing ambient air into the furnace exhaust likely increased the detected levels of chromium VI during the test due to the presence of oxygen in an exhaust stream reaching temperatures at or above 750 °F. The furnace exhaust configuration combined with the ambient air cooling methods used during the source test is not representative of past or future source operation planned at the facility. The normal operating process is to maintain a reducing rather than oxidizing environment. Nonetheless, the chromium emission rates measured during testing likely represent the upper bound of potential hexavalent chromium emissions and a conservative chromium III usage rate could be established based on the data provided in this report.

`


APPENDIX

HORIZON ENGINEERING 16-5702

Abbreviations, Acronyms & Nomenclature

HORIZON ENGINEERING 16-5702

Abbreviations and Acronyms Used in the Report

AAC	Atmospheric Analysis & Consulting, Inc.
ACDP	Air Contaminant Discharge Permit
ADEC	Alaska Department of Environmental Conservation
ADL	Above Detection Limit
BAAQMD	Bay Area Air Quality Management District
BACT	Best Achievable Control Technology
BCAA	Benton Clean Air Agency
BDL	Below Detection Limit
BHP	Boiler Horsepower
BIF	Boiler and Industrial Furnace
BLS	Black Liquor Solids
C	Carbon
C ₃ H ₈	Propane
CAS	Columbia Analytical Laboratory
CEM	Continuous Emissions Monitor
CEMS	Continuous Emissions Monitoring System
CERMS	Continuous Emissions Rate Monitoring System
CET	Calibration Error Test
CFR	Code of Federal Regulations
CGA	Cylinder Gas Audit
CH₂O	Formaldehyde
CH₄	Methane
Cl ₂	Chlorine
CIO ₂	Chlorine Dioxide
CNCG	Concentrated Non-Condensable Gas
CO	Catalytic Oxidizer
CO ₂	Carbon Dioxide
COC	Chain of Custody
СТМ	Conditional Test Method
СТО	Catalytic Thermal Oxidizer
DE	Destruction Efficiency
Dioxins	Polychlorinated Dibenzo-p-dioxins (PCDD's)
DLL	Detection Level Limited
DNCG	Dilute Non-Condensable Gas
dscf	Dry Standard Cubic Feet
EIT	Engineer in Training
EPA	Environmental Protection Agency
ESP	Electrostatic Precipitator
EU	Emission Unit
FID	Flame Ionization Detector
Furans	Polychlorinated Dibenzofurans (PCDF's)
GC	Gas Chromatography
ar/dscf	Grains Per Dry Standard Cubic Feet
H ₂ S	Hydrogen Sulfide
HAP	Hazardous Air Pollutant
HCI	Hydrogen Chloride
HHV	Higher Heating Value
HRSG	Heat Recovery Steam Generator
IDEQ	Idaho Department of Environmental Quality
lb/hr	Pounds Per Hour
LHV	Lower Heating Value
LRAPA	Lane Regional Air Protection Agency
MACT	Maximum Achievable Control Technology
MDI	Methylene Diphyenyl Dilsocyanate
MDL	Method Detection Limit
MEK	Methyl Ethyl Ketone
MeOH	Methanol
MMBtu	Million British Thermal Units
MRL	Method Reporting Limit
MS	Mass Spectrometry
MSF	Thousand Square Feet
NCASI	National Council for Air and Steam Improvement
NOAU1	reasonal ordinal for the and ordani improvement

Abbreviations and Acronyms Used in the Report

NCG	Non-condensable Gases
NCUAQMD	North Coast Unified Air Quality Management District
NDIR	Non-dispersive Infrared
NESHAP	National Emissions Standards for Hazardous Air Pollutants
NIOSH	National Institute for Occupational Safety and Health
NIST	National Institute of Standards and Technology
NMC	Non-Methane Cutter
NMOC	Non-Methane Organic Compounds
NMVOC	Non-Methane Volatile Organic Compounds
NWCAA	Northwest Clean Air Agency
NO _x	Nitrogen Oxides
~	•
NPD	Nitrogen Phosphorus Detector
O ₂	Oxygen
ODEQ	Oregon Department of Environmental Quality
ORCAA	Olympic Region Clean Air Agency
PAHs	Polycyclic Aromatic Hydrocarbons
PCWP	Plywood and Composite Wood Products
PE	Professional Engineer
PM	Particulate Matter
ppbv	Parts Per Billion by Volume
ppmv	Parts Per Million by Volume
PS	Performance Specification
PSCAA	Puget Sound Clean Air Agency
PSEL	Plant Site Emission Limits
psi	pounds per square inch
PTE	Permanent Total Enclosure
PST	Performance Specification Test
РТМ	Performance Test Method
QA/QC	Quality Assurance and Quality Control
QSTI	Qualified Source Testing Individual
RA	Relative Accuracy
RAA	Relative Accuracy Audit
RACT	Reasonably Available Control Technology
RATA	Relative Accuracy Test Audit
RCTO	Rotary Concentrator Thermal Oxidizer
RM	Reference Method
RTO	Regenerative Thermal Oxidizer
SCD	Sulfur Chemiluminescent Detector
SCR	Selective Catalytic Reduction System
SO ₂	Sulfur Dioxide
SOG	Stripper Off-Gas
SRCAA	Spokane Regional Clean Air Agency
SWCAA	Southwest Clean Air Agency
TAP	Toxic Air Pollutant
TCA	Thermal Conductivity Analyzer
TCD	Thermal Conductivity Detector
TGNENMOC	Total Gaseous Non-Ethane Non-Methane Organic Compounds
TGNMOC	Total Gaseous Non-Methane Organic Compounds
TGOC	Total Gaseous Organic Compounds
THC	Total Hydrocarbon
TIC	Tentatively Identified Compound
то	Thermal Oxidizer
TO	Toxic Organic (as in EPA Method TO-15)
TON	ton=2000 pounds
TPH	Tons Per Hour
TRS	Total Reduced Sulfur
TTE	Temporary Total Enclosure
VE	Visible Emissions
VOC	Volatile Organic Compounds
WC	Inches Water Column
WDOE	Washington Department of Ecology

NOMENCLATURE

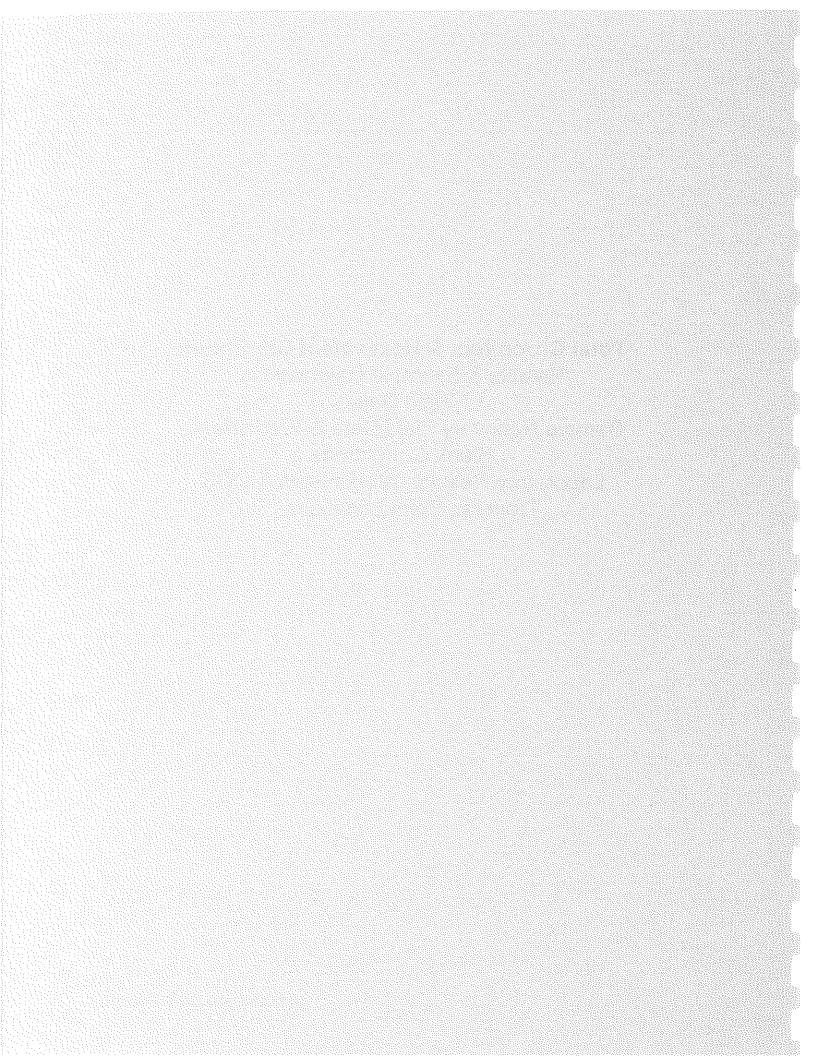
Constants	Value	Units	Definition	Ref
	29,92126		Standard Pressure	CRC
Pstd(1)	29.92120		Galidaid i teasure	CRC
Pstd(2) Tstd	527.67		Standard Temperature	CRC
R		r ⊧ft bf / lbmol °R	Ideal Gas Constant	CRC
• MW-atm		l bm / ibmole	Atmospheric (20.946 %O ₂ , 0.033% CO ₂ , Balance N ₂ +Ar)	
			Carbon	CRC
MW-C		ibm / ibmoie	Carbon Monoxide	CRC
MW-CO		Ibm / ibmole	Carbon Dioxide	CRC
MW-CO ₂		Ibm / ibmole		
MW-H ₂ O	18.01534	lbm / ibmole	Water	CRC
MW-NO2	46.0055	ibm / ibmole	Nitrogen Dioxide	CRC
MW-O2	31,9986	ibm / ibmole	Oxygen	CRC
MW-SO ₂		ibm / ibmole	Sulfur Dioxide	CRC
-		' ibm / ibmole (Balance with 98.82% N ₂ & 1.18% Ar)	Emission balance	
MW-N ₂ +Ar			Ideal Gas Constant @ Standard Conditions	
C1	385.3211297		Isokentics units correction constant	
C2		LinHg in¥°R ft²		Ref 2.5.1
Кр		f1/min [(inHg lbm/mole)/(°R inH ₂ O)) [*] /2	Pitot tube constant	EPA
Symbol	Units	Definition	Calculating Equation or Source of Data	EPA
As	in²	Area, Stack		
An	in²	Area, Nozzle	MARKET CONTRACTOR AND A CONTRACTOR MARKET	Fa 5 2
Bws	%	Moisture, % Stack gas	[100 Vw(std) / [Vw(std)+Vm(std)]]	Eq. 5-3
С	ppmv-C	Carbon (General Reporting Basis for Organics)		
C1	ft ³ /lbmol	Gas Constant @ Standard Conditions	[R Tstd / Pstd(2)]	
C2	inHg in²/ °R ft²	· · · · ·	[14,400 Pstd / Tstd]	
Cd	Ibm-GAS / MMdscf	Mass of gas per unit volume	[Cgas MWgas / C1]	En FA
cg	gr/dscf	Grain Loading, Actual	[15.432 mn / Vm(std) 1,000]	Eq. 5-6
cg @ X%CO ₂	gr/dscf	Grain Loading Corrected to X% Carbon Dioxide	[X%/CO ₂ %]	
cg @ X%O₂	gr/dscf	Grain Loading Corrected to X% Oxygen	[(20.946-X) / (20.946-O ₂)]	
Cgas	ppmv, %	Gas Concentration, (Corrected)		
Cgas @ X%CO ₂	ppmv	Gas Concentration Correction to X% Carbon Dioxide	[X%/CO ₂ %]	
Cgas @ X%O ₂	ppmv	Gas Concentration Correction to X% Oxygen	[(20.946-X%)/(20.946-O ₂ %)]	
		Cas concentration concentration oxygen	Maas (lbm/hr) * 1,000,000*385.3211/60*Qsd*mw	
Cgas	ppmv	Carbon Monoxide	Man formant 1,000,000 Deciper free and the	
CO	ppm¥ ft	Outer Circumference of Circular Stack		
Co	n ft	Inner Circumference of Circular Stack		
Ci		Carbon Dioxide		
CO ₂	%			
Ср		Pitot tube coefficient	[60 cg Qsd/ 7,000]	
Ct	lb/hr	Particulate Mass Emissions	[40 cg clsm 1,000]	
diH	ín H₂O	Pressure differential across orifice		
Dn	in	Diameter, Nozzle		
dp^1⁄2		Average square root of velocity pressure		
Ds	in	Diameter, Stack		
E	lb / MMBtu	Pollutant Emission Rate	Cgas Fd MWgas (20.946 / (20.946-O ₂)) / (1,000,000 C1)	
Fd	dscf / MMBtu	F Factor for Various Fuels		Table 19-1
1	%	Percent Isokinetic	[C2 Ts(abs) Vm(std) / (vs Ps mfg An Ø)]	Eq. 5-8*
Md	lbm / ibmole	Molecular weight, Dry Stack Gas	[(1-%O ₂ -%CO ₂)(MWn2+ar)+(%O ₂ MW-O ₂)+(%CO ₂ MW-CO ₂)]	Eq. 3-1*
mfg		Mole fraction of dry stack gas	[1-Bws/100]	
Mgas	lbm/hr	Gaseous Mass Emisisons	[60 Cgas(ppmv) MW Pstd(2) Qsd / 1,000,000 R Tstd]	
mn	mg	Particulate lab sample weight		
Ms	lbm / Ibmole	Molecular weight, Wet Stack	[Md mfg +MW-H ₂ O (1-mfg)]	Eq. 2-5
MW	ibm / ibmole	Molecular Weight		
NO ₂	ppmv-NO ₂	Nitrogen Dioxide (General Reporting Basis for NOx)		
		Nitrogen Oxides (Reported as NO ₂)		
NOx	ppmv-NO ₂			
02	%	Oxygen		
OPC	%	Opacity		
Pbar	in Hg	Pressure, Barometric		
Pg	in H ₂ O	Pressure, Static Stack		
Po	in Hg	Pressure, Absolute across Orifice	[Pbar + dH / 13.5951]	
Ps	in Hg	Pressure, Absolute Stack	[Pbar + Pg / 13.5951]	Eq. 2-6*
Qa	acf/min	Volumetric Flowrate, Actual	[As vs / 144]	E. 0 (0)
Qsd	dscf/min	Volumetric Flowrate, Dry Standard	[Qa Tstd mfg Ps]/[Pstd(1) Ts(abs)]	Eq 2-10*
Rí	MMBtu/hr		1,000,000 Mgas (20.946-O ₂)]/[Cd Fd 20.946]	
SO2	ppmv-SO₂	Sulfur Dioxide		
- It	ín Ín	Wall thickness of a stack or duct		
TGOC	ppmv-C	Total Gaseous Organic Concentration (Reported as C)		
Tm	°F	Temperature, Dry gas meter		
Tm(abs)	٩R	Temperature, Absolute Dry Meter	[Tm + 459.67]	
	۴F	Temperature, Stack gas	- •	
116	٩R	Temperature, Absolute Stack gas	[Ts + 459.67]	
Ts Ts(abs)		Volume of condensed water	-	
Ts(abs)	[[1]			
Ts(abs) Vic	ml dcf	Volume, Gas sample		
Ts(abs) Vtc Vm	dcf	Volume, Gas sample Volume, Dry standard gas sample	[YVm Tstd Po]/[Psłd(1) Tm(abs)]	Eq. 5-1
Ts(abs) Vic Vm Vm(sid)	dcf dscf	Volume, Dry standard gas sample	[Y Vm Tstol Po]/[Pstol(1) Tm(abs)] Kp Cp dp^% [Ts(abs)/ (Ps Ms)]^ ½	Eq. 5-1 Eq. 2-9*
Ts(abs) Vtc Vm Vm(std) vs	dcf dscf fpm			
Ts(abs) Vic Vm Vm(sid)	dcf dscf	Volume, Dry standard gas sample Velocity, Stack gas	Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^ ½	Eq. 2-9*

Ø * Based on equation.

·

. .

.


.

.

.

Total Chromium & Hexavalent Chromium

Results & Example Calculations Field Data Sample Recovery Field Data & Worksheets Blank Corrections Laboratory Results, Worksheets & COC Traverse Point Locations

Total Chromium and Hexavalent Chromium Emissions

Client Source		YË GLASS URNACE T <mark>7 -I</mark> NLET	26-Apr-16 Date JTF,JHJ,JL,BC,BS,PB,CH Operator				
Location	PORTLAI 0061	ND OR		MEW Analyist/QA			
Definitions	Symbol	Units	Run 1	Run 2	Run 3	Average	
Date, Starting	bymbol	Cintb	4/26/16	4/27/16	4/28/16		
Time, Starting			17:30	17:30	17:00		
Time, Ending			9:30	9:30	9:00		
Date, Ending			4/27/16	4/28/16	4/29/16		
Volume, Gas sample	Vm	def	209.580	151.465	148.999	170.01	
Temperature, Dry gas meter	Tm	°F	88.11	83.68	90.09	87.29	
Temperature, Stack gas	Ts	۰F	167.44	163.16	181.00	170.53	
Temperature, Stack Dry Bulb	Tdb	٥H	229	na	na		
Temperature, Stack Wet Bulb	Twb	°F	114	na 0 102	na 0.122	0.18	
Pressure differential across orifice	dH	in H2O	0.303 0.181	0,123 0,166	0.122	0.16	
Average square root velocity pressure	dp^1/2	in H2O^1⁄2		0,100	0.102		
Diameter, Nozzle	Dn O-	in	0.3103	0.2383	0.2383		
Pitot tube coefficient	Ср		0.8364	0.8248	0.8304		
Dry gas meter calibration factor	Y	in He	0.99949		0.99949 30.10		
Pressure, Barometric	Pbar D~	in Hg	29.90	30.10 -0.3	-0.3		
Pressure, Static Stack	Pg	in H2O	-0.3 760	-0.3 890	-0.3 880	843	
Time, Total sample	0	min				04J	
Stack Area	As	in ²	113.1	113.1	113.1		
Nozzle Area	An Vie	in ²	0.0756	0.0524	0.0524	69.8	
Volume of condensed water	Vlc	ml M O2	34.7 20.95	75.0 20.95	99.8 20.95	69.8 20.95	
Oxygen		% O2				0.03	
Carbon Dioxide	2.41	% CO2	0.03	0.03	0.03		
Molecular weight, Dry Stack	Md	lbın / lbmole	28.96	28,96	28.96	28.96 30.01	
Pressure, Absolute Stack	Ps	in Hg	29.88	30.08	30.08	30.01	
Pressure, avg arcoss orifice	Po	in Hg	29.92	30.11	30.11	164.52	
Volume, Dry standard gas sample	Vm(std)	dscf	201.79	147.94	143.84 4.70	3.29	
Volume, Water Vapor	Vw(std)	scf	1.63 0.80	3.53 2.33	4.70 3,16	2.10	
Moisture, % Stack (EPA 4)	Bws(1)	%			51.97	41.68	
Moisture, % Stack (Psychrometry-Sat)	Bws(2)	%	38.48	34.58	51.97 na	41.00	
Moisture, % Stack (Theoretical)	Bws(3)		na 5.83	na	na		
Moisture, % Stack (Psychrometry)	Bws(4)	% %	2.58	на 3,39	4.29	3,42	
Moisture, % Stack ODEQ5	Bws(5)	70	2.38 97.42%	96,61%	95.71%	96,58%	
Mole Fraction dry Gas	mfg	lbm / lbinole	97.42% 28.68	28,59	28.50	28.59	
Molecular weight, Wet Stack	Ms		28.08	28,39	600	621	
Velocity, Stack gas	vs Or	fpın acf/min	522	470	471	488	
Volumetric Flowrate, Actual	Qa	dscf/min	428	387	373	396	
Volumetric Flowrate, Dry Standard Percent Isokinetic	Qsd I	%	92.9	92.7	94.5	93.3	
1 ercent isoknicite	1	<i>,</i> ,	52.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 110	,,,,,	
Chrome Addition Rate		lb/batch	8.1	8.1	8.1	8.1	
		ton/hr	0.000253	0.000253	0.000253	0.000253	
Glass Production Rate		lb/batch	1,111.81	1,111.81	1,111.81	1111.81	
		ton/hr	0.0347	0.0347	0.0347	0.0347	
Sample weight-Total	mn	Chrome 6+ mg	1.769	1,036	0.430	1.078	
Grain Loading, Actual	cg	gr / dsef	0.000135	0.000108	0.000046	0.000097	
Gram Luaumg, Avtuar	~6	ppbv	143,3	114.4	48,8	102.2	
		mg / dscm	0.31	0.25	0.11	0.22	
		ng / dscin	309,654	247,332	105,545	220,844	
Mass Emissions	Ct	lbm / hr	0.00050	0.00036	0.00015	0.00033	
141255 151115510115	01	gm / hr	0.225	0.163	0.067	0.151	
Production Basis		lbin / ton-glass	0.014	0.010	0.004	0.010	
Troduction Dasis	<i>y</i>	lbm / ton-Cr	1.96	1.42	0.58	1.32	
	Т	OTAL CHROME					
Sample weight-Total	mn	mg	1.808	0.979	0.440	1.076	
Grain Loading, Actual	cg	gr / dscf	0.000138	0,000102	0.000047	0.000096	
		ppbv	146.4	108.2	50.0	101.5	
		mg / dscm	0.32	0,23	0.11	0.22	
		ng / dscm	316,457	233,776	107,978	219,404	
Mass Emissions	Ct	lbm / hr	0.00051	0.00034	0.00015	0,00033	
		gm / hr	0.230	0.154	0.068	0.151	
Production Basis		gm / hr lbm / ton-glass lbm / ton-Cr	0.230 0.015 2.00	0.154 0.010 1.34	0.068 0.004 0.60	0.151 0.010 1.31	

HORIZON ENGINEERING 16-5702

Total Chromium and Hexavalent Chromium Emissions (Measured)

Client Source Location	BULLSEYE GLASS FURI PORTLAND	NACE T7 -OUTLET	April 28, 2016 Date JTF, JH, JL, BC, BS, PB, CH Operator		
Location	0061		MEW	Analyist/QA	
Definitions	Symbol	Units	Run 3		
Date, Starting	.2		4/28/16		
Time, Starting			17:00		
Time, Ending			9:00		
Date, Ending			4/29/16		
Volume, Gas sample	Vm	def	123.834		
Temperature, Dry gas meter	Τm	°F	64.49		
Temperature, Stack gas	Ts	°F	140.03		
Temperature, Stack Dry Bulb	Tđb	°F	na		
Temperature, Stack Wet Bulb	Twb	°F	na		
Pressure differential across orifice	dH	in H2O	0.065		
Average square root velocity pressure	dp^1⁄2	in H2O^½	0,198		
Diameter, Nozzle	Dn	in	0.2097		
Pitot tube coefficient	Ср		0.8248		
Dry gas meter calibration factor	Y		0.98764		
Pressure, Barometric	Pbar	in Hg	30.10		
Pressure, Static Stack	Pg	in H2O	0.1		
Time, Total sample	Ø	min	910		
Stack Area	As	in²	119.1		
Nozzle Area	An	in²	0.0345		
Volume of condensed water	Vle	ml	33.6		
Oxygen		% O2	20.74		
Carbon Dioxide		% CO2	1,01		
Molecular weight, Dry Stack	Md	lbm / lbmole	29.11		
Pressure, Absolute Stack	Ps	in Hg	30.11		
Pressure, avg arcoss orifice	Ро	in Hg	30.10		
Volume, Dry standard gas sample	Vm(std)	dscf	123.88		
Volume, Water Vapor	Vw(std)	scf	1.58		
Moisture, % Stack (EPA 4)	Bws(1)	%	1.26		
Moisture, % Stack (Psychrometry-Sat)	Bws(2)	%	19.55		
Moisture, % Stack (Theoretical)	Bws(3)	%	na		
Moisture, % Stack (Psychrometry)	Bws(4)	%	na		
Moisture, % Stack (Predicted)	Bws(5)	%	3.06		
Mole Fraction dry Gas	mfg		96.94%		
Molecular weight, Wet Stack	Ms	lbm / lbmole	28.77		
Velocity, Stack gas	vs	fpm	697.7		
Volumetric Flowrate, Actual	Qa	acf/min	576.9		
Volumetric Flowrate, Dry Standard Percent Isokinctic	Qsd 1	dscf/min %	495.1 94.8		
Chrome 6+					
Sample weight-Total	mn	mg	0.0988		
Grain Loading, Actual	cg	gr / dscf	0.000012		
5,	.0	ppby	13.0		
		ppniy	0.013		
		mg / dscm	0.028		
		ng / dscm	28,166		
Mass Emissions	Ct	lbm / hr	0.000052		
		gm / hr	0.024		
Production Basis		lbm / ton-glass	0.0015		
		lbm / ton-Cr	0.206		
FOTAL CHROME			0.10000		
Sample weight-Total	mn	mg	0.10220		
Grain Loading, Actual	cg	gr / dscf	0.000013		
		ррву	13.5		
		ppmv	0.013		
		mg / dscm	0.029		
Maga Emissiona	~	ng / dscm	29,135		
Mass Emissions	Ct	lbm / hr	0.000054		
Oraduation Desig	•	gm / hr	0.025		
Production Basis		lbm / ton-glass	0.0016		
		lbm / ton-Cr	0.213	ENGINEERING	

HORIZON ENGINEERING 16-5702

Total Chromium and Hexavalent Chromium Emissions (Estimated Based on PM Removal)

Client	BULLSEYE		April 28		Date	
Source		NACE T7 -OUTLET	JTF,JH,JL,B	C,BS,PB,CH (Operator	
Location	PORTLAND 0061	OR	MEW	I	Analyist/QA	
Definitions	Symbol	Units	Run 1	Run 2	Run 3 /	Verage
Chrome Addition Rate		lb/batch	8,1	8.1	8.1	8.1
		ton/hr	0.000253	0.000253	0.000253	0.000253
Glass Production Rate		lb/batch	1,111,81	1,111.81	1,111.81	1111.81
		ton/hr	0.0347	0.0347	0.0347	0.0347
PM removal efficiency			99.29%	99.56%	99.57%	99.47%
Chrome 6+			······································			
		ng / dscm	2,195	1,098	456	1,250
		mg/dscm	0.002195	0.001095	0.000456	0.001250
Mass Emissions	Ct	lbm / hr	0.0000035	0.0000016	0.0000006	0.0000019
		gm / hr	0.002	0.0007	0.0003	0.0009
Production Basis		lbm / ton-glass	0.00010	0.00005	0.00002	0.00006
		lbm / ton-Cr	0.014	0.006	0,003	0.008
TOTAL CHROME						
		ng / dscm	2,243	1,038	466	1,249
		mg/dscm	0.002243	0.001038	0.000466	0.001249
Mass Emissions	Ct	lbm / hr	0.0000036	0.0000015	0.0000007	0.0000019
		gm / hr	0.002	0.0007	0.0003	0.0009
Production Basis		lbm / ton-glass	0.00010	0.00004	0.00002	0.00006
		lbm / ton-Cr	0.0142	0.0059	0.0026	0.0076

Sample Calculations - Basic Method 1-5 Flow, Isokinetics, Concentration, Rate

Client: Bullseve Glass Company	Date <u>4/26-4/29/2016</u>	
Source Glass Furnace T7-Inlet	Project # <u>5702</u>	Run # 2

Molecular Weig	hts (lb/lbn	nol):						
CO2=44.0	O2=32	.0	N ₂ +Ar	=28.0	H ₂	O=18.0	atm=28.96	
Constants:								4
Pstd(1)=29.92	129 in Hg	Tstd=52	7.67 °R	Kp=512	9.4	C2=816.54	455inHg in²/°R ft²	

Pressure, Absolute Stack (Ps):
Ps, inHg =
$$P_{\text{Barometric}}$$
 + $\frac{P_{\text{static}}}{13.6}$ = $\frac{30.10}{13.6}$ inHg + $\frac{-0.3}{13.6}$ inH20
 $\frac{13.6}{13.6}$ = $\frac{30.03}{13.6}$ inHg
Volume, Dry Standard Gas Sample (Vm[std]): $Tm = \underline{83.68} \circ F + 459.7 = \underline{543.38} \circ R$
 $Orifice Pr ess = Pb \ \underline{30.10} \ inHg + \underline{0.123 \ \Delta H} = \underline{30.11} \ inHg$
 $Vm(std) ft^3 = \frac{Y \times MeterVol \times Tstd \times Orifice Pr es(Po)}{Pstd(1) \times Tm^{\circ}R}$
= $\frac{0.999494}{29.92inHg \times \underline{543.68} \circ R \times (Po \ \underline{30.11} \ inHg)}{29.92inHg \times \underline{543.68} \circ R} \times (Po \ \underline{30.11} \ inHg)} = \underline{-148.04} \ dsof$
Moisture, % Stack Gas (bws): V_{wstd} = $0.04706 \times Cond.H2O$, $ml = 0.04706 \times \underline{75.0} \ ml = \underline{3.53} \ scf$
 $bws = 100 \times \frac{V_{wstd}}{V_{wstd}} = \frac{3.53 \ scf}{1.00} = 1 - \frac{2.33 \ \%}{100} = 2.33 \ \%$
Mole Fraction Gas (mfg): $1 - \frac{bws}{100} = 1 - \frac{2.33 \ \%}{100} = \underline{0.9767}$
Molecular Weight, Dry, Stack (Md): Ambient Conditions, Md = 28.96 lb/lb mol
Molecular Weight, Wet, Stack (Ms):
 $Ms \ \frac{lb}{lbmol} = (Md \times mfg) + (MolWiH_2O \times (1 - mfg)) = (\underline{28.96} \ \frac{lb}{lbmol} \times \underline{0.9767}) + (18.0 \times (1 - 0.9767))$

HORIZON ENGINEERING 16-5702

26

Client: Bullseve Glass Lompany Date 4/26-4/29/2016 Stack gas (vs): $Ts = |63, |6 \circ F + 459.7 = 622.86 \circ R$ $= vs \frac{feet}{min} = Kp \times Cp \times dp \sqrt{inH_2O} \times \sqrt{\frac{Ts^{\circ}R}{Ps \times Ms}}$ $= 5129.4 \text{ ft} / \min \dots \times \underline{0.8248} \times \underline{0.146} \text{ } dp \sqrt{inH_2O} \times \sqrt{\frac{622.86^{\circ}R}{30.08} \text{ inHg} \times \underline{28.70} \frac{lb}{lbmol}} = \underline{.597} \frac{\text{ft}}{\min}$ Flow Rate, Actual (Qa): $Qa \frac{actualCubicFeet}{\min} = \frac{AreaStack \times vs}{144} = \frac{113.1 \text{ in}^2 \times 597 \text{ ft}}{144} = \frac{469}{144}$ acfin Flow Rate, Dry Standard (Qsd): $Qsd \frac{dryStdFt^{3}}{\min} = \frac{Qa \times Tstd \times mfg \times Ps}{Pstd(1) \times Ts^{\circ}R} = \frac{-469}{29.92inHg \times -6767} \times -20.08 inHg}$ $= \frac{390}{\min}$ Percent Isokinetic (I): $I\% = \frac{C_2 \times Ts^\circ R \times Vm(std)}{C_2 \times Ts^\circ R \times Vm(std)}$ $vs \times Ps \times mfg \times An \times \theta$ $= \frac{816.5455 in Hg \cdot in^{2} / {}^{\circ}R \cdot ft^{2} \times 622.36 {}^{\circ}R \times 48.04 dscf}{591 fpm \times 30.08 in Hg \times 0.9761 \times 0.0524 in^{2} \times 890 min}$ = 92.05 % Grain Loading, actual (cg): $cg\frac{gr}{dscf} = \frac{15.432gr}{g} \times \frac{1g}{1000mg} \times \frac{mgSample}{Vm(std)} = \frac{15.432gr}{g} \times \frac{1g}{1000mg} \times \frac{0.979}{146.04} \frac{mg}{dscf}$ $= 0.000102 \qquad \frac{gr}{dscf}$ Mass Emissions (Ct): $Ct \frac{lb}{hr} = \frac{60 \times cg \times Qsd}{7000 grains / lb} = \frac{\frac{60 \times 0.000 / 02}{dscf} \times \underline{390}}{7000 gr / lb} = \underline{0.00034} \frac{lb}{hr}$

HORIZON ENGINEERING 16-5702

Sample Calculations, Chromium Concentration

Client: <u>Bullseye Glass Company</u> Source <u>Glass Furnace T7 - Outlet</u> Date <u>4/28-4/29/20/6</u> Project # <u>5702</u> Run # <u>3</u> Page ____

CHROMIUM CONCENTRATION. mg/dscm

Total Unvome

Measured Results, gr/dscf_0.000013

Equation: $CR, mg/dscm = Cr, gr/dscf \times \frac{lb}{7000gr} \times \frac{453,592mg}{lb} \times \frac{35.315cubicft}{cubicMeter}$

Calculation: $\frac{0.000013}{Cr,gr/dscf} \times \frac{lb}{7000gr} \times \frac{453,592mg}{lb} \times \frac{35.315 cubicft}{cubicMeter}$ = 0.030 Cr,mg/dscm

= 30,000 ng/dscm

Client: <u>Bullseye</u> Glass Company Source <u>Glass Furnace T7-Inlet</u> Date <u>4/26-4/29/2016</u> Project # <u>5702</u> Run # <u>3</u>

Chromium Emissions Production Based: Ib/ton Chromium production:

Measured Cr Results, 1b/hr 0.00015 Total Cr

Chromium Production, lb/batch _____

Equation:
$$\frac{lbCr}{tonChromium} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbChromium}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation: $\left(\frac{OOOOL5\ lbCr}{hr}\right) \times \left(\frac{batch}{OOOL5\ lbCr}\right) \times \left(\frac{batch}{D.1\ lbChromium}\right) \times \left(\frac{16hrs}{day}\right) \times (2000lbCr/1tonChromium) = \frac{O.593\ lbCr}{tonChromium}$

HORIZON ENGINEERING 16-5702

Client: Bulkeye Galass Company Source Glass Furnace T7-Outlet Date 4/284/29/2016 Project # 5702 Run # 3

Chromium Emissions Production Based: Ib/ton Chromium production:

Measured Cr Results, 1b/hr 0.000052 Hex. chronne

Chromium Production, lb/batch ______

Equation:
$$\frac{lbCr}{tonChromium} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbChromium}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation:

$$\left(\frac{\underline{0.000cs2lbCr}}{hr}\right) \times \left(\frac{batch}{\underline{B.[}lbChromium}\right) \times \left(\frac{16hrs}{day}\right) \times (2000lbCr/1tonChromium) = \frac{\underline{0.205}\ lbCr}{tonChromium}$$

Client: <u>Bullseve</u> Glass Company Source <u>Glass Furnace T7-Outles</u> Date<u>4/28-4/2016</u> Project # <u>5702</u> Run # <u>3</u>

Chromium Emissions Production Based: lb/ton glass production:

Measured Cr Results, 1b/hr_0.000054 Total chrome

Glass Production, lb/batch ______

Equation:
$$\frac{lbCr}{tonGlass} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbGlass}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation:

$$\left(\frac{\underline{O.\inftyossflbCr}}{hr}\right) \times \left(\frac{batch}{\underline{I,III.8I} \ lbGlass}\right) \times \left(\frac{16hrs}{day}\right) \times (2000lbGlass/1tonGlass) = \frac{\underline{O.\infty/6} \ lbCr}{tonGlass}$$

Client: Butkeye Glass Company Source <u>Glass Finnace T7-Inlef</u> Date <u>4/26-4/29/2016</u> Project # 5702 Run # 2

Chromium Emissions Production Based: Ib/ton glass production:

Measured Cr Results, 1b/hr 0.00036 Hex chrome

Glass Production, lb/batch ______

Equation:
$$\frac{lbCr}{tonGlass} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbGlass}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation:

$$\left(\frac{\underline{O.O2236}\ lbCr}{hr}\right) \times \left(\frac{batch}{\underline{I,III,OI}\ lbGlass}\right) \times \left(\frac{16hrs}{day}\right) \times (2000lbGlass/1tonGlass) = \frac{\underline{O.O104}\ lbCr}{tonGlass}$$

Client: Bullseye Glass Company Source Glass Furnace T7-Outlet Run #_ Date___ Project # <u>5107</u>

Chromium Emissions Production Based: lb/ton Chromium production:

Calculated Cr Results, 1b/hr_ 1,0000036 Total Chrome

Chromium Production, lb/batch $\underline{\mathcal{B}}$.)

Equation:
$$\frac{lbCr}{tonChromium} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbChromium}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation:

$$\begin{pmatrix}
\underbrace{0.00056lbCr}{hr}
\end{pmatrix} \times \begin{pmatrix}
\underbrace{batch}{B_{e}}
\end{bmatrix} \times \begin{pmatrix}
\underbrace{16hrs}{day}
\end{pmatrix} \times (2000lbCr / 1tonChromium) = \frac{\underbrace{0.0142lbCr}{tonChromium}$$

$$1 \text{ mg} = 1,000,000 \text{ ng} \rightarrow 1,000,000 \text{ ny} \times 0.002243 \text{ ng/dscm}$$

 $1 \text{ mg} = 2,243 \text{ ng/dscm}$

Client: <u>Bullseve Gloss Company</u> Source <u>Glass Furnace T7-Outlet</u> Date _____ Project # <u>5762</u> Run # 2

Chromium Emissions Production Based: Ib/ton Chromium production:

Calculated Cr Results, 1b/hr 0.0000016 Hex. Chrome

Chromium Production, lb/batch ______

Equation:
$$\frac{lbCr}{tonChromium} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbChromium}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation:

$$\left(\frac{0.000016 \ lbCr}{hr}\right) \times \left(\frac{batch}{\underline{B}, \underline{l}, \underline{l}bChromium}\right) \times \left(\frac{16hrs}{day}\right) \times (2000 \ lbCr \ / \ 1tonChromium) = \frac{0.006 \ lbCr}{tonChromium}$$

Client: <u>Bullseye Glass Company</u> Source <u>Glass Furnace T7-outlet</u> Date______ Project # <u>5702</u> Run # <u>3</u>____

Chromium Emissions Production Based: lb/ton glass production:

Calculated Cr Results, lb/hr 0.000007 Total Chrome

Glass Production, lb/batch ______

Equation:
$$\frac{lbCr}{tonGlass} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbGlass}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation:

$$\left(\frac{0.000000\text{ lbCr}}{hr}\right) \times \left(\frac{batch}{1,111.81\text{ lbGlass}}\right) \times \left(\frac{16hrs}{day}\right) \times (20001bGlass/1tonGlass) = \frac{0.00002\text{ lbCr}}{tonGlass}$$

Client: <u>Bullseve Glass Company</u> Source <u>Glass Furnace T7-Dutlet</u> Date_____ Project # <u>5702</u> Run #____

Chromium Emissions Production Based: Ib/ton glass production:

Calculated Cr Results, 1b/hr_0.0000035_____ Hex. Chrome

Glass Production, lb/batch ______

Equation:
$$\frac{lbCr}{tonGlass} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{batch}{lbGlass}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation:

$$\left(\frac{\cancel{0.0000}}{hr}\right) \times \left(\frac{batch}{\cancel{1.00}}\right) \times \left(\frac{16hrs}{day}\right) \times \left(\frac{16hrs}{day}\right) \times (2000lbGlass/1tonGlass) = \frac{\cancel{0.0000}}{tonGlass}$$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		•										37	·····
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A	A		-		Å	- 1		Client:	Bullse	ege Glas	5
MONTROSE Intermit Montrosement 1 2100 3 1 <th1< th=""> 1 <th1< th=""> 1 1 <th1< td=""><td></td><td>()</td><td></td><td></td><td></td><td>PAGE</td><td>.101</td><td>-4</td><td>Facilit<u></u></td><td>y Location: Source:</td><td>Fortho</td><td>VO, T-7</td><td></td></th1<></th1<></th1<>		()				PAGE	.101	-4	Facilit <u></u>	y Location: Source:	Fortho	VO, T-7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MON	FDZAUL			•		1	Sampl	e Location:	Inle f	of Bag	house
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		States of States of States of States	the second s				— •	1		- (gy s) C	· 1830	Heat Set	۰۰ °F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	Test Meti	iod OO	61		2 .	13100	(), 3 ¹⁰⁷					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nt Testing	ODEQ	5	з.	13110	1				<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			The state	Europaut	The II		ALT-011					$\sim \sim \sim$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				ant ((Ta) Q 30F	. Std TC (I	D/°F) 32/	<u>83</u>	Filter -			Heat Set	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Moisture	N1090	Tdb	Twb	Stack TC	: (Ⅲ/°F) <u>2-2</u>	183	and the second se			strate and lighted and block and	the second s
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Press., St	atic (Pstat)	•, 30 Pre	ess., Bar (Pb) 29,90	Contin	uity Check)oʻr †	-		· · · · · · · · · · · · · · · · · · ·		
Note Two Two <th< td=""><td></td><td>-</td><td></td><td>Clock</td><td>Dry Gas Meter</td><td>Velocity Head</td><td></td><td></td><td>B</td><td></td><td></td><td></td><td></td></th<>		-		Clock	Dry Gas Meter	Velocity Head			B				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					cufi			ACTUAL		7, "F	٩Ŀ	*F *F	inHg
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(dt)	120				(ari)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10	1.6	<u> </u>	363.101	620	.14.9	17	172/	17	12	82 82	-4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				┨────┟	505.01	115	909	99		-+			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					071101	117			112				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					319.6		1617	101	<u>↓···</u>	-12			2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 1					,268	14		++-	00	001	
$ \begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$		<u>,</u> 8	50				,417	192		┟┼┟─	$\frac{62}{22}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J	67	Ç0			,046	,373				62	╞┼╌╌┥╾┈╴	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Þ	7 G	76	1840		,016	132	1			62		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\$ 5	go		389	,051	,383				64		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, 4	90		392.45	.050		,38		$\downarrow \downarrow \downarrow$	65		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 3			394.80	,013	,097	, 10	215		60		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		11 2	110		397.00	1023	,180	18	186	///_	63		·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	120		399.88	,033	,278	,28	141/		63		3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	130		406.01		1,37	1.4			61		S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2			409.38	1033	,245	,25	227		56	9702 92	-83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			the second se		i	,78	232	$\left \right $	58	98 92	- 5 .
13 100			· · · · · · · · · · · · · · · · · · ·					,56	227	7[]	59	102 92	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·				}	,35	193 /		61	101 23	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	<u></u>	<u> </u>	424 05	1		,34	193	\square	63	99 92	- 3
$\frac{12}{20} + \frac{129.03}{200} + \frac{149.03}{15} + \frac{145}{15} + \frac{15}{204} + \frac{163}{63} + \frac{26}{93} + \frac{33}{3} + \frac{11}{210} + \frac{11}{93} + \frac{11}{109} + \frac{139}{139} + \frac{14}{236} + \frac{236}{195} + \frac{164}{95} + \frac{236}{95} + \frac{164}{95} + \frac{236}{95} + \frac{164}{95} + \frac{165}{95} + \frac{1850}{95} + \frac{1840}{2130} + \frac{1840}{2130} + \frac{165}{2130} + \frac{1850}{2130} + \frac{1840}{2130} + \frac{1850}{2130} + \frac{1840}{2130} + \frac{1840}{210} + \frac{1840}{210}$		1			426 89		,248	,25	153		63	1	
21 9 210 431.11 .019 .139 .14 236 / 64 95 92 3 22 10 220 433.22 .021 .162 .16 195 / 65 95 92 3 23 11 230 233 435 .651 .028 .216 .22 196 / 61 95 91 3 24 12 240 2143 438.30 .029 .234 .23 165 51 94 91 3 Notes: B1Shared files in building of whether of 5 PDX.v1.pdf 2130 Provised to check Ph., Resumed at 1850 B1Shared files in building of whether of 5 PDX.v1.pdf 2130 Provised to check Ph., Resumed at 1850						,019	145		204	$\overline{\mathbf{N}}$	63	96 93	
12 10 210 110 110 110 100 110 100 110 100 110 100 110 100		6	<u> </u>			-	· · · · · · · · · · · · · · · · · · ·	,14	236	1/	64	95 93	23
1 23 1 230 23 133 135 .651 .028 .216 .22 196			ļ			1	1	11		711	65	959	23
23 (1 2 240 2143 438.30,029,234,23 65 5 94 91 3 24 12 240 2143 438.30,029,234,23 65 5 94 91 3 25 Notes: B:Shared files/Fible/Day Stretchards Substrated of 1850 B:Shared files/Fible/Day Stretchards Substrated of 2133	Ŕ		<u></u>	2130 33			1 · · · · · · ·	1				9591	3
25 Notes: B1Shared files it build and sheeting 5 PDX vi, port of 2130. > Paused to check ph, Resumed at 1850 B1Shared files it build block block by 2130. > Paused to check ph, Resumed at 2133	<i>v</i> .			2143	438 30						51	94 9	
Notes: B: Shared files/ Held Methods pox.vi.por 1 2130: > Paused to check ph, Resund at 2133		•	1010				, <u> </u>	1 4 4					
B: Shared files Held Days Shekts Method's PDX-VI. pdf 1 2130 9 Caused to check ph, Kestmark at 2133			I,	<u> </u>		<u>し</u> あ 1840-ラ	Paused t	o ched	k Phi	Resum	ed at		
A A A DECEMBER (BAR) MARIAN (A) (A) (A) (A)		B:\Shared	files\Field\Dat	SheetsMeine	5 Synethor 5 PDX-v1.pdf	1 2130 7	Pausel +	s chied	c phil	Resure	d at	2133	
		Kai	everyphil	nous the	1/24/20	16							
HORIZON ENGINEERING 16-5702				ľ					HORIZO	N ENGI	NEERIN	IG 16-5702	

	A	67 Sa		Whitaker Way	0/1	2	, [Tradilite	Client: y Location: Source:	Bullsey	e Gla	<i>\$</i> 5 ₃₈		
			Portland, C		PAGE	a of	4	Tucint	y Location: y Source:	GITIMA E. GARC	by CP	1	ļ	
	MON		Phone (503 Fax (503) 2		Glass Nozzle M	Leasurements		Sampl	e Location:	Inlet			<u> </u>	
	A	26/16		33,000		,3100 1		Probe 2-2	() / s) C	, 836				
	Test Met	hod OO	6		2 .	,3100) 3103	Post-Test Pite	t Inspection				=damaged)	l
	-	nt Testing	DDEQ	3	3 -	3110_		Pitot Lk Rate in H2O@in H		Pre: Hi Lo	Y	Post C	<u>@5</u>	
·	Run#	511	Support	Troll	1. S.	ALT-011,		Nozzle , 3	And the second se	Oven		. Outlet	(-35	1
	Tampara	tura Ambia	ant	(Ta) THOF	. Std TC (I	D/PF) SL /	83	Filter				t Set		1
1.00	Moisture	-10º%	J Tab 2	29 Into 114		(ID/°F) <u>l'</u>		Meter Box 2		<u>19767</u>	The second state of the se	YO, 4 cfm 15	<u>9949</u> б ілНа	l.
Ψ	Press. St	atic (Pstat)	> ● Pr	ess., Bar (Pb) 21,9 If yes, avg. null angle_		nuity Check (†)or l	Meter Leak Check		Pretest: Post: . ($\frac{cfm}{cfm}$		
	Traverse	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifica Pressure	Crifice Pressure H2O	STACK PRO		1MPINGER Outlet	METER Inlet/Avg.	METER Outlet	Pump Vocuum	
	Point Number	Time min	Time (24 hr)	Reading cuft	in H2) (dPs)	in H2O DESIRED	ACTUAL	°F °F (Ts) {T₁	7. °F	°F (TI)	°F (Tm-in)	°F (Ta1-out)	inHg (Pv)	
		(dt)	2143	<u>(Ym)</u> 438.30			्र (तम)	Anth: Amb:	Amb:	Amb:		Amb:		
	12	250		441.02	,032	,266	.27	147 (51	94	91	3	
	· ·	260		111.00	,039	13227	3623	143	$+ \leq$	51	95	90	3	
	2 <u>1</u> 1			1112 29	1040	370	,37	136		51	95	96	3	1
	, 10 9	270	<u> </u>	447.51 USO 1/	1022	207	21	127 /	/ /	51	96	91	3	•
B	4	<u> </u>	2225	1,0.15	020	102	,18	203	+(-	<u><</u> <u>u</u>	95	91	3	
<i>V</i> -	<u>, 8</u>	290	<u> </u>	433.6	,020	183				54	89	87	2	1
	6	300	ļ	456.62	1817	,300	,38	20	++	00	89	86	3	
	76	310	ļ	460.15 "	103-1	1425	193	1197		01	<u> </u>	0Q 86	3	
	: 5	320	ļ	463.58	1,049	,416	.91	180	4/-	66	90	<u></u>	3	-
	<u>, 4</u>	330	<u> </u>	466.73	,046	, 361	,36	226 /		61	91	86 85	3	-
	10 3	340	<u> </u>	469.66	1040	1313	,31	227	++	65	92	86	3	-
	<u>11</u> 2	350			,042	,331	,33	223	$\rightarrow \rightarrow$	67	102	-	3	- ·
	12	360	<u> </u>	475.80	10,04	3,369	,37	167	1 1	61	73	87	<u></u>	
	13	370		480.26	,088	,757	16	161	/	62	95	87	5	5
	14 2	386		485.12	,094	,804	,80	172 /	· /	100	15	07	<u>4</u>	9
	15 3	390		489.875	,088	,760	176	167		61	96		Ч.	450,
	16 4	400		492.455	1093	,201	.20	61	$- \uparrow \uparrow$	60	<u>96</u>	87	3	
	17 5	410		494.92	.031	.257	.26	189	$\downarrow \downarrow \downarrow$	62	94	87	<u>3</u> 3	1
	18 6	420		4964996	,019	,155	,16	201		63	92	88		TERMINIA
	19 7	430		499.381	0,026	,226	.23	160	///	63	92	87	3	3
	20 8	440		502-5H	,040	. 359	36	141.7	[(62		88	3	- 2
	21	450		505.561	, 038	.335	.34	<u> 152 \</u>	-	6	92	1	4	before
Λ.	22 10	460		508.275	.029	. acé 7	1.27	125		6	93	87	4	
14	23	470		510.80	1201	.251	125	160		Kar	92		<u>44</u>	
	24 12	480	239	512.962	.018	:168	.17		/ /	63	92	8.7	3	1/0/me
	- 25	\$490	ז ^{ד –} ו						/ / /		<u> </u>		<u> </u>	
	Notes			2225 > #1	H 282 mi	n, 10 Sec,	panse	to si	witch .		train	s	/ _{11. /}	<i>T</i> .
	B:\Share	files\Fleld\Da	la Sheels\Mell	od 5Weihod 5_PDX-v1.pdf	•	Volume	450,6	40 Lea	alk che	ick ,	006	<u>e</u> /	intig	12
				2225 → A y rod 5\Method 5_PDX-v1.pdf - Lea	ik chedie	of new	r tain	was ,0	0107h	rthij	-> R	esume	1 at	日心
•)										

						<u>1</u>	Telu Data	Blieet						39	•
	A	11 5		Whitaker Way		O∩i ≶	3 of §	ē.l.	P		Client:	BULS	ONE (1 10	Ś
	())		Portland, O Phone (503			PAGE	<u> </u>	24	F	аешту Б	Source:	FURN	AE 1	TT	
	MON	TROSE				Glass Nozzle N	Aeasurements	•	s	ample L	ocation:	INCE	<u> </u>		
	Date -	126/11	0-4/6	27/16		1	<u>, 3100 -</u>	7	Probe 6		(g)/s) C			t Set	
		hod O'O	ME			2.3	<u>.3100</u> .3110	5,3103	Post-Tes Pitot Lk		ispection				-damaged)
	Run#	ent Testing	85_			5	<u></u>	ر 	in H2O(Lo	0@5		~@ 4
	Operator			JM, JF, B!	2		ALT-011		Nozzle ,			Oven -		o. Outlet	<u> -35</u>
	Tempera Moisture	ture, Ambie	ent Tdb	(Ta) Twb		. Std TC (I Stack TC	D/°F) <u>83°</u> - C (ID/°F) <u>83°</u> -	<u> </u>	Filter 🛩 Meter B		dH@ [976		nt Set	
	Press., St	atic (Pstat)	30 Pr	ess., Bar (Pb)29	9		uity Check (Meter			Pretest: (and the second se		inHg
			cted ? <u>N</u>	If yes, avg. null ar	igle	degrees Velocity Head	Orifice Pressure	Orifico Pressure	Leak Ch STACK	eck PROBE	OVEN	Post: IMPINGER	METER	cim • METER	- inHg Pump
	Traverso Point Number	Sampling Time min	Time (24 hr)	Reading cuft		in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	۴F	۴F	Filter F	Outlet °F	Inlet/Avg. °F	Outlet *F	Vасники inHg
	Patitiber	(dt)		(Vm)		x		(dil)	(Ts) Amb:	(Tp) Amb:	(To) Amb:	(Ti) Amb:	(Tm-in) Amb;	(Tm-out) Amb:	(Pv)
\forall			04:44	514.361	3				100				01	-10	
	1	490		517.17		,034	1293	.29	156		<u> (-</u>	62	81	$\frac{11}{70}$	3
	2	500		519.44	3	୍ଦର୍	, 189	.19	156			63	82	79	3
	3	510		522.53	7	.039	.328	.33	173	_		60	84	79	3
	4	520		524.53	Ś	030	.172	.17	159			51	86	08	3
	,	530		5210.75	3	, 023	.198	. 20	160			60	87	80	3
	·	540		529 74	58	<u>, 030</u>	.258	.26	161		\square	67	87	80	3
	6			C2157	9		.228	,23	149		1	58	87	8	3
	7	<u>550</u>		10101	\mathcal{Q}	<u>_020</u>		S.	162		-1		86	81	2
	8	560		533. QU	0		140	K.15	179			57	85	82	
	9	570		<u>330.15</u>		.044	.367	,37	1 · · · · · · · · · · · · · · · · · · ·			$\frac{b}{r}$			3
	10	580		538.98	1	.022	.182	1.18	184			56	86	<u>B</u> L	3
	11	<i>5</i> 90		541.114		.017	.168		<u> 140_</u>		Ц	57	86	180	3
	12 .	600		543.23	7	.018	,159	16	14Q		\square	510	85	182	3
	p 12	610	07.	545.36	3	.018	.158	16	141	<u> </u>		67	85	81	3
	4 []	620	07:04 07:10	547.38	Q.	017	, 50	15	123	1	\square	56	Ro,	81	3
	IN 10	630	[''\Q	549 (of	6	,023	,200	1,20	53			59	84	83	3.
		120		552.10	9	0276	.238	, 24	158			68	84	R	3
	18	650		554.T	5	020	1.181	.18	129			57	85	82	3
	1 7	1 .		556.56	10	,035	.224	122	30			58	85	81	3
	H	1000	 		\overline{O}	.015	.133	13	140	\square		58	86	82	3
	9 6	670			-			10			+		1	181	3
	2 5	680	,		3_	<u>,014</u>	1.120	<u> </u>	15	. -	┼╌┼╸	<u>67</u>	1 <u>86</u> 187	82	
	24	690		661.65	<u>C</u>	,015	132	.15	149	↓	·	$\left(\mathcal{A} \right)$	<u> </u>		33
	23	100		56.74	9_	1,021	185	.19	148	μ_	_↓	(α)	87	83	
	3	110		5105,49	3	,015	1.132	<u> </u>	150			6	86	183	3
	4 1	120		5/57.11d	$\overline{\mathbf{x}}$	1014	.123	12	149			(a)	86	83	3
		130	1	SOR. 63	Ł	.012	102	10	170			62	87	83	3
-	Notes:	<u> </u>			1.	<u>. · · · · · · · · · · · · · · · · · · ·</u>	te constant dans			<u> </u>		\			
	B:\Shared	files\Field\Dala	Sheets\Moth	od 5\Method 5_PDX-v1.	pdf	•			. 1		J				

B:\Shared files\Field\Data Sheels\Mothod 5\Method 5_PDX-V1.pdf X LEAK CHLER/TYRAIN CHMNGE FROM 512.9102 - 514,368 X PAVSE FOR PH CHLER HORIZON

MON	TROSE	Portland, Phone (50	3) 255,5050	PALE Glass Nozzle [4 OF Mensurements			acility L	Source	n n n		GLAE	5
Date 🕄	& ula	6/10 -	4127116	1	L. 8. 3K	J/				p, 92(cl		nt Set "	• F
Test Me	thod Odd	<u>الــــــــــــــــــــــــــــــــــــ</u>	• •	2	. 3100	5,303	Post-Tes		nspectio	-) ∫ damaged)
	ent Testing	<u>M5</u>		3	-310	. J	Pitot Lk			Pre: Hi			
Run #	<u>Qa</u>				417 011		in H2O()	Lo(
Operato	r XX		<u>JM, 57F, BS</u> (Ta)		- <u>ALT-011</u> 1D/°F) <u>83</u>	5ĩ	Nozzle . Filter			Oyen 🐃		p. Outlet at Set	
	e W%	Tdb	Twb		D(D/F) <u>85</u> C(D/F) <u>85</u>		Meter B		dH@	.976			19949
			ress., Bar (Pb)		nuity Check (-	Mete			Pretest:			-
			If yes, avg. null angle				Leak Ch	eck			008	cfm /) inHg
Trayerse Point	Sampling Time	Clock Time	Dry Gas Meter Rending	Velocity Head in H2)	Orifico Pressuro in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	METER. Inlet/Avg.	METER Outlet	Pump Vacuum
Number	ករវែរ (dt)	(24 hr)	cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F (Tp)	°F (To)	°F (Ti)	•y (Tm-in)	°F (Tm-out)	inHg (Pv)
	(4)					(a)	Amb:	Amb:	Amb:	Amb:	Ашъ;	Amb:	
1 Q	740		570.476	1017	.146	.15	161	1	1	61	87	84	3
3	750		572.584	160,	.182	. 18	159	$\left(\right)$		60	87	53	3
3 4	760	09130	574.147	.020	.173	.17	158			58	87	84	3
6	770												
6	780												
-7			•								· · · ·		
18			• • • • • • • • • • • • • • • • • • • •		•								
9							<u>.</u>						
10													
10 6.1			5	58 C							 		
ца			•		-				ŀ	ļ	[•
2						·			$\downarrow \!$				
18									1		ļ		
<u>X</u> 4			•		•								
15			•										
15			•										, .
17													
18													
6													
2													
2			· · · · · · · · · · · · · · · · · · ·		-					ļ			
									L				Ŷ.
23			,		,								
21										<u> </u>			
21 Notes:			,					<u> </u>				L	

Notes:

B:\Shared files\Field\Data Sheets\Method 5\Method 5_PDX-v1.pdf

in the second second

			switch	ed noz	2/es jus?	Field Data	<u>i Sheet</u> shching	(un .		PA(Ē	1 86	24	
Å	A		Whitaker W			36,7	580			Client:	Bulls	eye	Glas	-3
(@	VIN .	Portland,			250'	$2 \in \mathcal{I}$	580	F	acility L	ocation:	Porta	~diof		
MON	TROSE	Phone (50 Fax (503)	3) 255-5050		Glass Nozzle I	Aasuroments	2510	l s	amnte L	Source: ocation:	Inlet	ند ا ⁻		
Date 4	the second s	נפטפ) גאיד.	200-0000		1	,3100	100	Probe 2			p,824	8 не	it Set -	- °F
	hod $OO($				2.	-3100-	Jan 1	Post-Tes	t Pitot L	aspection				-damaged)
-	ent Testing	ODEO	- 5		3	-13110	7	Pitot Lk			Pre: Hi	a 1	Post *	
Run # 🤈			Joe H			ALT-011		in H2O(Nozzle			Lo Oven -	~ ~ /		<u>-</u> 1-35
	ture, Ambi		(Ta) 75 °	Ŧ	, Std TC (10/m ふ)	175_	Filter -					at Set 🔫	
Moisture	~490	Tdb 🖌	202 T	WB 105	Stack TC	C (ID/ºF)2-1	4	Meter B	and the second second	dH@)	9767	Contraction of the local division of the loc	<u>ү, १</u>	Contractor and Contractor
Press., St	atic (Pstat)	~0,3Pr	ress., Bar (Pl LIf yes, nvg.	b) 30, 10	Contin degrees	nuity Check ()or į	Meter Leak Ch	V	<u>e7</u>)	Pretest: Post:	:012	cfm	o inHg
Traverse	FIOW EXPE	Clear Clock		s Meter	Velocity Head	Orifice Pressure	Orifice Pressure	Leak Ch STACK	PROBE	OVEN	IMPINGER	METER	METER	Puap
Point Number	Time min	Time (24 հr)		ւմոց սՈ	in H2) (dPs)	ia H2O DESIRED	H2O ACTUAL	۴F	۶F,	Filter °F	Outlet *F	Inlet/Avg. "F	Outle! °F	Vacuum inHg
	(đi)	1.720	N N N	$\frac{m}{2}$			(dH)	(l's) Anıb:	(Tp) Amb:	(To) Amb:	(Ti) Amb;	(Tm-in) Amb:	(Tut-out) Anıb;	(Pv)
	1,0	1730	3/3	268	,036	,122	,12	14/		7	67	78	78	2
2	20	 	579	. 55	,053	,205	,21	147	(\Box	62	80	78	2
. 3	30		581	95	,055	,206	,21	166			59	81	78	2
4 4	40		583	76	.031	,121	12	197			57	84	79	2
5 5	50		585	.74	,040	,155	16	203			58	84	80	2
6 G	60		587	. 71	,035	,141	,14	182	$\left\lfloor \left(- \right) \right\rfloor$	[56	86	82	2
, 1	70				,040	,175	,18	129	<u> </u>	Δ	56	87	83	2
<u>.</u> 8	80		591	.98	,038	,152	,15	186			56	88	84	2
, 9	90	 	593	. 87	,033	,132	,13	188			56	89	84	2
10 10	100		595	. <u>91</u>	,036	.142	,14	195	_/		58	89	85	2
<u>n</u> (1	110	L	597	<u>.77</u>	,033	,129	,13	204	/	_/	36	89	86	2
12 12	120		599	.52	,030	,114	,11	226	<u> </u>	/	57	89	85	2
13 2			<u> </u>	<u>.70</u>	,04.4	, 181	,18	169		<u> </u>	58	88		2
14 []	140	2000	603		,035	,149	,15	149		$\left \right\rangle$	55	89	86	2
15 10	150	2000		697	,035	,147	,13	159	├	$ \rangle$	57	89	85	2.
16	160			13	,045	, 183	÷18	176		<u>├</u>	54 55	88 89	86 85	2
17 8	170		610		,034	139	,14	173			56	89	86	2
18 7	180			25	,03G	151	15	61	-{		56	90	86	2
19 6	190		613 615	$\frac{1}{\sqrt{4}}$,022	,092	,09	160				90	86	2
20 5 4	200		610		,023	,100	,10 ,09	188	\vdash			90	86	
21 -1 22 J	210		C.10	<u> </u>	,021	,080	,08	218	<u> </u> /	\vdash	58	89	86	2
20	220 230		<u>618</u> 620	10	,020	,080	,08	217		\vdash	58	89	86	2
	240	2134	621	77	,028	,107	,00	219	+	+ /	58	89	87	2
24	VIV	10107	1061	. / /	1220	1141			\vdash	$\vdash t$		<u> </u>	0.1	
25	Lest L	<u> </u>	1	► .(1	e ODEQ 5		Littin h	<u> </u>	<u> </u>	<u>h</u>		L	L ALT	of the s

Notes: Used the stack temp, of the ODEQ 5 for point #12 because the thermocouple was out of the stacks Bishared filest Field Data Sheets Melhod 5 Method 5 PDX-V1. pdf A Pansed at [50 min, to check the ph. (2000) - Resumed at (2004) HORIZON ENGINEERING 16-5702

,

PAGE 2 0F42

ř

									<u>(11)</u>		<u>()</u>		<u> </u>
A.	1		Whitaker Way				ا ت	allity T c	Client: [Inllseye Portlond	WR.		
10		Porfland, C Phone (503					га			Furnad			
MON		•		Giass Nozzle M	Tensurements		Sa			Inlet			
Date 4/	THE OWNER WATER COMPANY	Fax (303) A	33-0303		,2580 \		Probe &				3 Hea	t Set 🦟	~ °)
	hod 006			2	, 2580	2583	Post-Test					change, D	-damaged)
	ent Testing		5	3	,2590		Pitot Lk I	Rate		Pre: Hi (D @2c	Post 🛰	@_~
· Run # 2		OULO			10		in H2O@	in H2O	3		0@12		@ -
	· Juhn	Support .	Jue H.		ALT-011		Nozzle ,	2583		Oyen	- Imp	. Outlet	1-35
	ture, Ambie		(Ta) 75°F	. Std TC (I	D/PF) 32/	75_	Filter					it Set 🧹	<u>^</u>
	1-3510		56 TWB 95	Stack TC	(ID/°F) <u>2-'</u> 1	174	Meter Bo		THE OWNER WHEN THE OW	<u>ነ</u> ዋ7ሪ7:			9949
Press., Si	atic (Pstat) *	~0,3 Pre	ess., Bar (Pb) 30, 1	Contin	uity Check	or L	· ·			Pretest:	<u></u>	cfm 🚠	
Cyclonic	Flow Expec	ted ? <u>AB</u>	If yes, nvg. null angle	degrees			Leak Che		OVEN	Post: IMPINGER	METER	efm Meter	inH Pump
Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O		PROBE	Filter	Oatlet	Inlet/Avg.	Outlet	Vacuum
Number	min	(24 հr)	cu5i (Vm)	(dPs)	DESIRED	ACTUAL (dH)	Т (Гs)	₹₽. (7µ)	°F (Ta)	°F (TI)	°F (Tm-ia)	°F (Tm-out)	inHs (Pr)
	(đt)	2134	621.77		Ì	4 4		Amb;	Amb:	Amb;	Amb:	Аль;	
		0131		221	100	418	191	1	7	50	89	87	2
	250		623.74	,035	,139	, 14	191			58_			
22	260	2156	675 73	,033	,143	, 14	163			56	89	86	2
\$ 3		2159	(1797)	,029	,126	,13	156	$\overline{}$		56	89	86	2
3 7	270		661.11		,110		1.0	\rightarrow					
44	280		63-	.023	,099	.10	161		<u> </u>	52	89	86	2
5			631.50	,022	,093	,09	186			કર્ડ	89	86	2
<u>s U</u>	290							/	\rightarrow		(
46		2241	633.14	,022	,090	,09	213			57	89	86	2
8:0	310	2310	634.58	,018	.071	,07	224			58	89	96	2
			636.74	,038		17	156	\mathbf{t}	1	60	85	85	2
<u>, 8</u>	320				,166	11/		-				85	2
-4,9_	330	2339	639.40	,055	,245	,25	44		$ \rangle_{-}$	56	85		
501 10 10	340	2343	642,20	,058	,251	,25	62			52	86	83	2
ack) 11	350		<u>(44 Q)</u>	,059	,245	,25	187	- \		53	86	83	2
	{		644.81					. 1	┝──┼╸	52	87	83	23
12 12	360	0009	641.31	,066	,265	,27	211						
1312	370		650.04	,064	,253	,25	221			51	87	83	3
11	380		652.71	,060	,235	,24	227	1	/	5	87	83	3
14								\	1.	53	87	83	3
15 \D	390	· · ·	655.41	,065	,270	,27	188	<u> </u>	╫───				
16 C	400		657	,042	185	,19	151		\square	52	87	83	
17 8	410		659.90	,044	, 198	,20	137		$ \rangle$	54	87	83	2
17 0			11100		1		145			54	87	83	
18 1	420	<u> </u>	661.11	,022	,098	,10							
19 6	430		(do3.404	,021	.094	,09	139			56	87	83	2
	440	1	Wet. 885	,020	.0898	,09	139	7	17	50	87	83	Q
			1					/	-/-				
21 4	450		10lele. 86	1015	,062	.00	190	<u> </u>	· /	56	· · · · · · · · · · · · · · · · · · ·	83	2
22 3	460		6207.628	6.000	.08CP	,09	209	\land	II .	57	186	83	R
1 mm		<u> </u>			1			1	Й			83	2
23 2	470	<u> </u>	UB .985		,079	.08	201	\vdash	\vdash	57			1×
24	480	02:09	1070.246	.019	1079	,579	189			56	186	<u>83</u>	2
		<u> ~~,~ </u>			.08								
25 N - 6 - 7 -	1 0 0 0	<u> </u>		1 1		19155	<u> </u>	<u> </u>	ļ	<u> </u>	<u>ا</u>		
Notes:	# 26°2 n	mhor	pausod to a od 51Method 5 PDX-V1.pdr - to action play CHANGE @ 0210	neck pr	1/100	(2106)	Q						Mor
	alestrieid\Uata	OTECISIMORY	a onenior o Lov-Altha	mercannest (m (and)				>		1 1-		
B.Ionalec	/	DI	1 11 1	A	JI L A	10 Lana 10	クロドリ		00.00	1	r_{0}	Z10	/ 0.

HORIZON ENGINEERING 16-5702

n., 3 ج مریک میں ا •

43

- Resured at 234 min, (2339) (Cheching the ph again)

Glass Nozzle Measurements

1

2

2580

<u>2580</u>

13585 NE Whitaker Way

Portland, OR 97230 Phone (503) 255-5050

Fax (503) 255-0505

4/28/16

MONTROSE

Date 4 27 16 -

Test Method OOL

- I Cot DICO				- •		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			- THE REAL PROPERTY OF	and the second se			
	ent Testing			3	2590		Pitot Lk	Rate		Pre: Hi () @X)Post -	~ @
Run# 6		1.5-			N		in H2O(Jin H2O		Lo	0 @12	۲. –	-@
Operator		Support	JM JF, BS		ALT-011		Nozzle	. 2533	}	Oven 🦟). Outlet	
	turc, Ambie		(Ta)	. Std TC (⊡/°F)_ `75`	<u>s</u>	Filter -					at Set –	<u> </u>
	~3%		Twh	Stack T(C (D/ºF) <u>74</u>	°_2-1	Meter B	0x 2	dH@	1976	<u>915</u>	¥0.9	9949
<u> </u>			ress., Bar (Pb) 30.10	Conti	nuity Check 🖌)or (Mete	Ľ		Prefest:	∞	cfm 🐪	inHg
			If yes, avg. null angle_	degrees	~	·	Leak Ch	leck		Post:		efm 🗕	– inHg
Traverso	Sampling,	Clock Time	Dry Gos Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OYEN Filter	IMPINGER Outlet	METER Iniet/Avg.	METER Outlet	Ритр Уасции
Point Number	Time mis	(24 hr)	enft	(dPs)	DESIRED	ACTUAL	°F	۴F	۴F	۴F	°F (Tm-in)	۴F	inHg (Pr)
	(dt)			-		(dEL)	(Ts) Amb:	(Tp) Amb:	(To) Amb:	(Ti) Amb:	(1m-m) Amb;	(Tm-out) Amb:	(EV)
		52:33	442246				<u> </u>			ļ			
1	490		671.63	.017	.076	.08	138			56	82	83	2
, ,	500		1573,173	. 022	.098	01.0K	140	Π(17	68	84	82	2
1	610		1574.598	1,021	,093	,09	143	\square	Π	56	84	81	2
, ,	530		1575 813	.016	.073	.07	130		Γ\·	67	85	81	2
4 5	530		(oT1.088	017	.077	,08	133	\Box		67	84	82	2
5	540		678 219	.015	1067	.07	134	17	17	57	85	Ra	2
-	5FO		1,79,739	.021	.096	. 10	ian	1	17	58	86	82	2
Ľ			<u>Un u vi</u>					H	1/		MI	01	Δ

Teflons

2633

Probe 2-1

Post-Test Pitot Inspection

44

٩F

201

<u>ን</u> ታዙ

Heat Set -

(NC=no change, D=damaged)

PAGE 3 of 4

Client: Bullseye

Facility Location: Portlandy OR. Source: Furnage T-7

(#++)Cp_ 8048

Sample Location: Inlet

42

2	500		(573.	73	. 022	800,	1.0°K	140			<u>58</u>	84	82	2	
3	610		674.5	598	,021	.093	<u>, 0</u> 9	143	\sum		56	84	81	2	
4	530		1575.5	313	,016	,073	.07	130)	<u>\</u>	67	85	81	2	
5	530		(ott.c	88	.017	.017	,08	133			61	84	୫ର	2	. •
6	540		678.	319	.015	1067	.07	134		$__$	57	85	ಕಿನ	a	
7			679.	789	·021	.096	.10	ai	(58_	85		2	
8			BL.	90	,030	132	13	149	$\mathbf{\Lambda}$		58	84	the second se		
9			683.	568	.036	.156	.16	156			58	85			
10			685.0	Xa	,095	. 108		159			56	84		2	
11	590		686!	326	.022	,095	<u>(0</u>	160	<u> </u>		157	84	81	2	
12	600		BS.	095	,023	.00	.10	F 55			<u>58</u>	84	80	a	
p IQ	Cel O		689	112	102X	.095	10	161	/		67	84	81	à	
4 11	620		691.	371	,037	.117	.12	158	<u> </u>	/	58		81	2	
\$ 10	630		692.	987	$\overline{\mathbf{A}}$	13	<u>, (</u>	169		<u> </u>	58	85	82	2	
1.9	Co40_		(814.1	399	.031	133	.13	165		\mathbf{h}	57		, , , , , , , , , , , , , , , , , , ,	2	
# 8_	450	0r	696.	289	,030	.131	.13	153			57				
7 660 $(79,739)$ 021 096 10 121 58 85 82 2 8 660 $(681,490)$ 030 132 13 449 58 84 81 2 9 570 $(683,5643)$ 036 166 116 166 58 85 81 2 9 570 $(685,064)$ 026 108 111 159 566 84 81 2 10 580 $(685,095$ 032 095 10 160 157 84 81 2 11 670 $(685,095$ 033 100 10 155 58 84 80 2 12 610 $687,1102$ 032 095 10 161 67 84 81 2 11 630 $691,1311$ 032 095 10 165 57 86 32 2 11 630 <															
1 6	670	-,45	699.	.013	.016		,07	149	/		58	82	79		
2 5	680	<u> </u>	700.	240	1019	.084	10B	148	ļ		59		<u></u>	1	
7 4	690	· .	701.	431	.015	.007	101	140	<u> </u>	<u> </u>	60	84	80	3	
¥ 3	700		702.	445	.014	, das	,06	137	\square		60	83	79	3	
12	710		703.E	583_	.015	. ado	.07	145		\square	ω	83	80	3	
24	720		704.	724	.05	1007	107	139		\square	60	82	79	3	
25	130		the second s	860	,013	.058	J. do	146	/		6	82	179	3	
Notes:	A PAU	SED Sheelel Malh	DR pH	CHEU	< Q 05	:30			יסבום						
D:/OUSLOCI	1963A_161717919	OUGO COM DUILO	a amound o_F	max. a ributs	•			но	RIZON	N ENG	INEER	ING 16	5-5702		

	•										45.	
				·]	Field Data	<u>Sheet</u>		ØΛL	F 4	of 4		
					·		·····	r ne	BOILS	EFE G		
		13585 NE Portland, (Whitaker Way OR 97230				Facility	y Location	POPTL	AND, OF	2	
	· · · .	Phone (50)	3) 255-5050				formel	Source Location	: FUKNA : CUTH	T-Tut		
	TROSE 2716				Leasurements	, ,	Probe 2~1		Cp ,824			• <u>F</u>
	hod ODG		μ <u>σ.</u>	2	2680 ((Post-Test Pito	t Inspectio)n	(NC=no chi	ange, D=daπ	and the second se
	ent Testing	M5		3	3590	د	Pitot Lk Rate in H2O@in H		·	<u>() @20p</u> 0 @(2	ost <u>O</u> @	
Run # 2		Support	TM. JF. BS	<u> </u>	ALT-011		Nozzle "25		Oven		· · · · · · · · · · · · · · · · · · ·	-35
Tempera	ture, Ambio	ent	(Ta)	Std TC (1D/°F) <u>75</u> °	2. JL	Filter	dH@	1 071	Heat S	$\frac{Set}{0.990}$	ліо [°] г
	atio (Potat)	Tdb	Twb ess., Bar (Pb)30. (O		C (ID/°F)] 74 nuity Check (Meter Box	ипш	Pretest:		- share an a second	inHg
Cyclonic	Flow Expe		If yes, avg. null angle_	degrees	-		Leak Check	BE OVEN	Post: (m 5 1eter	inHg Pump
Traverso Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Hend in 112)	Orifice Pressure in H2O DESIRED	Orifice Pressure H2O ACTUAL	STACK PROP	Filter	IMPINGER Outlet °F		Outlet V	raap Jacanna inHg
Number	min (dı)	(24 hr)	cuft (Vat)	(dPs)	DESIKED	(dH)	(Ts) (Tp) Amb; Amb:		(Ti) Amb:	(Tni-in) (T Anib: Am		(Pv)
			· · · · · · · · · · · · · · · · · · ·			*	110 1			$\left \begin{array}{c} 0 \\ 0 \end{array} \right $		
12	740	·	101.031	<u></u>	.075	.08	143 1		60		<u>}0 3</u>	<u>'</u>
3	750		708.100	.016	,070	101	149		60	82 1		<u>} </u>
4	760		709.301	, 017	.074	:08	1411	_	6	1001	19^{2}	
15	170		710.792	1,021	,095	10_	133	_	6	82 8	<u>80 3</u>	<u> </u>
10	780		712,292	,024	101	11	139	$-\uparrow$	60	82	19 3	
17	790		713.652	1.021	1092	.09	150 /		00	81	<u>18 3</u>	<u> </u>
8	800		714,757	1016	150,	.07	142/		60	80 7	83	3
9	810		715.840	ollo	,071	.07	139		6	81 7	18 3	5
10	830		717.5HQ	.031	.137	,14	141		6	80 -	18 3	5
	830		719,207	.029	128	13	14B	\square	60	81	18 3	,
	840		720 254	.015	, dolp	,07	146		6	82-	78 [3	5
112	850		721.46le	1016	1	107	145		61	82 -	79 3	;
112	860		722.816		180,	108	136		6			
1 (1			724,408	1026		,12	134		Carl		19 2	2
110	870	<u> </u>	726.134	,029	.130	,13	133		Cor		18 3	2222
4	<u>C88</u>			1	· · · · · ·		134		63		$\frac{10}{19}$	$\frac{1}{2}$
18	078	ମଞ	726.733	,030	.135	14_					<u> </u>	<u> </u>
7		 	· · · · · · · · · · · · · · · · · · ·			 	┼──┤- \	+/-		<u> </u>		
16	<u> </u>	_	·				┼──┼-┧			<u> </u>		
P	· ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·			· · · ·	├ 	_			<u></u>	
30	ļ	ļ	, ,	· · · · ·			<u>├</u> ╎-┠			 		
2	<u> </u>	<u> </u>	· · · ·		ļ	. 	╎╶╌╎┠			├		
2	<u> </u>					ļ	↓↓			<u> </u>		
2			· · · · ·		<u> </u>					<u> </u>		
2									<u> </u>			
25]					
Notes:		1	·					-,-				

Notes:

B:\Shared files\Field\Data Sheets\Method 5\Method 5_PDX-v1.pdf

					Ī	lield Data	Sheet	P	AGE	()	24		46	*• •	
		Portland, (, <u></u> ,,,,,,	-At 1735 build,	did a wet Dry=205 Wet=115	~ 5ulb/dry ~ C.8%			Client:	Bullsey Portla Furnac	e Gla J, OR, T-	55 1		
MONT)) 255-5050 255-0505		Glass Nozzle N	feasurements		s	ample L	ocation:	Tulet				
Date 4/ Test Meth		1				2580	Teflon	Probe 2 Post-Tes					at Set -	- °F =damaged)	-
Concurrer			5		3	2590/	,2583	Pitot Lk	Rate		Pre: Hi	0 @15	Post	<u>~@</u>	1
Run # 🥱						AT 27 011		in H2O@ Nozzle			Lo (Oyen	0	o. Outlet	- <u>@</u> - 1-20	
Operator 7			<u>Sbe H.</u> (Ta) 860	P	. Std TC (I	<u>ALT-011</u> D/F) <u> </u>	186°F	Filter ~		2		He	at Set 🚽	~ °F	r -
Moisture	~ 30/0	Tdb	- Twb		Stack TC	:(Ⅲ/ºF) <u>2-2,</u>	186°7	Meter B		dH@	,976			79949	
Press., Sta	tic (Pstat) *	- 3 Pr ted ? NO	ess., Bar (Pb) If yes, avg. nu	99, Il angle	Contin degrees	uity Check (f)or L	Meter Leak Ch			Pretest: , Post:	-010	cfm 8 cfm -	inHş — inHş	-
Traverso	Sampling	Clock Time	Dry Gas M Rending	eter	Velocity Head in H2}	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filler	IMPINGER Outlet	METER Inlet/Avg	METER Outlet	Pump Vaenum	1
Point Number	Tine min (dt)	(24 hr)	cuft (Vm)		(dPs)	DESIRED	ACTUAL (dll)	°F (Ts)	°F. (Tp)	۳۶ (To)	°F (Ti)	*F (Tm-in)	°F (Tm-out)	inHy (Pr)	
	()	1700	727	156				Amb:	Amb:	Anıb:	Amb;	Arib:	Amb:		
12	10		729 .3	24	1039	,173	,17	151			66	85	84	2	
2 []	20		731	36	,037	,163	,16	153	1	[]	65	85	84	2	
3 10	30		733	50	.041	169	.17	197	$\overline{\langle}$		65	86	84	2	
, 9	40		725	48	,032	.131	,13	202		T.	65	88	85	2	1
8	50		727	15	.021	,087	,09	198	$ \rightarrow $	$ \uparrow \uparrow \uparrow$	64	90	87	2	1
5	7		720 0	27	,026	,102	10	196	1	+	63	92	87	2	-
6 /	60		70.	06	· · · · · · · · · · · · · · · · · · ·		11	153	+ -		62	92	09	2	1
7 6	70	<u> </u>	740.1	$\frac{60}{20}$,025	108		221			62		90	2	1
<u>s 5</u>	80		192.0	10	,027	,102	10	249		 (−−	66	15	91	2	-
, 4	90_		144.	37	,043	16	,16	· · · ·	-	\square	63	73	01		_
10 7	100		746	19	,031	,116	, 12	252	<u> </u>	$ \cdot \rangle$	60	70	12	2	-
11 2	110		748 -	/0	1061	.227	,23	256		╞	62	97	13	3	4
12	120		751 (<u>00</u>	.067	,282	,28	187			58	98	13	3	;
13	\3o		754 .(63	1305	,305	,31	174				100	99	3	ļ
14 2	146		757	35	,062	,245	,25	242			56	100	95	3	
15 3	150	1930	760	28	,072	.279	,28	253		V	58	100	95	3	•
16 4	160		762.	41	,038	,146	,15	262		Κ	65	100	95	3	
	170		764	71	,046	,180	,18	252	$\left \right $	\prod	57	99	95	3	1
6	180		766	70	,030	,119	,12	243	\square	\uparrow	56	98	95	2	1
-1	190			72	,030	137	.14	149		+	57	98	95	3	1
19 / 20 8	200			$\frac{7}{68}$,030	,139		138			58	97	95	3	1
		,	772	<u>60</u> 19		<u> </u>		189		+	57	97	93	2	-
21 9	210		116.	11_ 7~		,081	80,		+	+ +		97	94	h	-
22 10	200	2050	113.	<u>70</u>	,020	108	,08	223		+/-	60			2	-
23 \\	230	2050 2118		680	,021	,082	,08	253	1/	+{──	6	96 90	93	3	-
24 12	240	2128	778.	13	,054	1226	,23	201	1/	↓	66	94	93	3	_
- 25			<u> </u>			L	L	ļ	Ц		<u> </u>	<u> </u>	1		
Notes:	\$ Pan	set o	+ 205	o to	allow f	plant, pe	ronell F0110	to pwi	ge, (2	30 mir	, ot a	un tin	re) (Hiso che	ck:
B:\Shared fil	ies\rield\Data	oneetsiMeth	a olimeruoa 9_PD	∧-vi.put =	Resumed	resting a	~ 200						1	the phat	1
							, · · ,	HOF	RIZON	ENGI	NEERIN	IG 16-	5702		

Dil a vertaule/dry bulk ort 2020

n.						Field Data	<u>a Sheet</u>	PA	$ = 2 \cdot 0 f \cdot 4 $	
			Portland,	Whitaker Way OR 97230			- <u> </u>	Facility L	QE 2. OF 4 Client: Bullseye Glass Location: Portlandjor.	
	HORI2 ENGINEE		Phone (50 Fax (503)	3) 255-5050 255-0505	Glass Nozzle]	Measurements		Sample L	Source: Furnace T.m? Location: Enlet	
	Date 4/		······	······	1	,2580	Tefler	Probe 2-2	(g/s) Cp . 83.4 Heat Set - °F	
		hod 🔘 ent Testing		<	2	<u>,2580</u> ,2590 /	<i>7,25</i> 83	Post-Test Pitot I Pitot Lk Rate	nspection (NC=no change, D=damaged) Pre: Hi © @\\$Post ~ @ _	[
	Run#	3					•	in H2O@in H2O	Lo O @ 16 - @ -	
		r <u>John L</u> iture, Ambi		<u>Ste 4,</u> (Ta) 76° F	Std TC (<u>ALT-011</u> (D/°F) <u>آل /</u>	61ass 864	Nozzle : 2583 Filter	Oven — Imp. Outlet - 20 Heat Set - °F	
	Moisture	~3010	Tdb 🏧	- Twb	Stack T	C (ID/°F) <u>2-2 </u>	/ 86°F	Meter Box Z	dH@ ,97675 Y0,99949	
				ess., Bar (Pb) 30, 10 If yes, avg. null angle_		inuity Check())o'r †	Meter Leak Check	Pretest: 010 cfm 8 inHg Post: cfm - inHg	
	Troverse	Sampling Time	Clock Time	Dry Gas Meter Rending	Velocity Head in H2)	Orifico Pressure in H2O	Orifice Pressure H2O	STACK PROBE	OVEN IMPINGER METER METER Pump Filter Outlet Inlet/Ayg. Outlet Vacuum	
	Number	min (dt)	(24 lu)	cuti (Vn)	(dPs)	DESIRED	ACTUAL (dH)	⁰F °F (Ts) (Tp)	°F °F °F inHg (To) (Ti) (Tim-in) (Tim-out) (Pv)	.
			2128	778.23			·	Amb: Amb:	Annb: Annb: Annb: Annb:	
	1	250		780.55	.046	,195	,20	191 /	1 57 93 92 3	
	2	260		782.86	,040	,181 d	18	152	57 94 91 3	
	3	270		784.71	,028	,119	,12	192	5694912	
	4	280		786 19	1023	,094	,09	25	\ 59 93 91 2	
	5	290		787 61	.013	,053	,05	209	61 93 91 2	
	6.	300		788.97	,020	,079	,68	233 /	6493913	
•	7	310	-	790.70	1024	,098	.10	212 /	6193913	
	8	320		792.96	,042	,181	•18	182 /	/ 58 94 91 4	
	9	330		795.74	,061	,270	,27	165	1 53 95 92 4	
	to	340			,069	,309	131	158 \	50 96 91 4	l
٨.	13	0 10	2327	801.78	.074	,326	,33	169 \	5096915	ļ
A	12		2331 2332	864.82	.081	,351	,35	179	49 96 92 5	
	13	370		607807.65		276	,28	222 1	5395915	-
	14	380			1075	,300	,30	232 /	50 95 92 79	28/16
	15	390		812.82	,047	.186	,19	240 /	49 95 92 6	
		400		815.24	,051	,215	,22	194 /	/ 52 94 91 10	
	16	410		817.10	,029	122	,12	1701	1 52 94 91 8	
-	17	420	····	818 72	,024	,107		158	55 94 91 8	8
	18	TIAN	0046	820.11	,020	,089	,09	60	57 93 91 8 9	5
	19		1302	822.08	,024	,114	.11	121	57 93 90 15->	chede
	20	450		823,487	,023	,093	,09	220	63 91 89 2	3
	21	460		824.885	,033	.089	.09	Jai7	6391892	الجر کچ
	22	470		834.432	. <u></u> . 028	.112		220 /	61 91 89 2	Vacium
	23		้อมป่า		1026		10		16291892	- -
	24	480	0147	OX (1-TV)	1.0000	101	NU	336 /		M.
	25 Notes: «	& Pausel	at 2	327 to check	ph. ~	Resumal	destina	at 2232 :	2331 (359 min, of lesting	\ 4
	B:\Shared fi	ies\Field\Data	Sheets\Method	34 marks	41 - 10	at chort	<u> </u>	161 11	> Shall we the silila a	2 I
2	ga Yau	wed		DGM valume = 82	1,032 1	Time		TUNTI	To decrease the Vacuum. N ENGINEERING 16-5702	1 ~
	•		*	· · · · · · · · · · · · · · · · · · ·	(NUTES	contha	e oadered	N ENGINEERING 16-5702	

Leak check after shaking siliza get .011 @ 7in Hg DGM = 821,245 before resuming. > Resumed testing at 1302 48.

				s.	Field Dat:	a <u>Sheet</u>		PF	6E	3 d	24	4	9
1		13585 NF	Whitaker Way				1		Client	BULL	- SME-	Ci ACC]
			OR 97230				Т	Jacility I	onations	0.22	CL B.	den-	
HORI		•	3) 255-5050						Source	FURN	Ace t	1	
ENGINEE		Fax (503)		Glass Nozzle l	Measurements	· •	. 5	Sample I	ocation:	11 8	VET'		
Date 6	112811	2-46	a 116	1	<u>, 2680,)</u>)	Probe d	2-2	(g+s) (p , 8210	- He	at Set	<u> °r</u>
Test Me	thod OX			2	<u>, 3630</u>	583C,);	Post-Te:	st Pitot I	nspectio)=damaged)
	ent Testing	M5		3	<u>, 3693</u>	<u>)</u>	Pitot Lk			Pre: Hi			
Run#		~ ~ ~		<u>.</u> И.	AX 77 011		in H2O(-		Lo			-@- 120
Operato	r <u>BC.</u> Mure, Ambi	Support	<u>JM, CH, BS, P</u> (Ta)		<u>ALT-011</u> D/PF) <u>X(</u> 2	5	Nozzle . Filter -		5	Oven *		p. Outlet at Set 🗠	
	~ 3%	Tdb			பார <u>ுக</u> C (ID/PF) _ இ (Meter B		dH@	9767			age 19
			ress., Bar (Pb) 30.10		nuity Check		Mete			Pretesta		efm 7	inHg
	Flow Expe		If yes, avg. null angle_				Leak Cl	leck		Post:	******	efm 🕤	- inHg
Traverse Point	Sampling Time	Clock Timo	Dry Gas Metor Reading	Velocity Head in H2}	Orifico Pressuro in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	METER Jalel/Avg.	METER Onlict	Pomp Vacuum
Number	min	(24 lur)	લ્લાણ	(dPs)	DESIRED	ACTUAL	۴F	₽F (Tre)	۳F	°F	°F	۴F	inHg
	(dt)	and	$0 \sqrt{2} \sqrt{2}$			(dH)	(Ts) Amb:	(Tp) Amb:	(To) Amb:	(Ti) Amb:	(Tm-in) Amb;	(fm-out) Amb: -	(Pv)
		03/14			~ 1	~~~~	11: 0		1	10	Co	රාන	
1	490	<u> </u>	046.180	.06	011	10	162	$\left \right $	$\left \left(- \right) \right $	62	90	88	2
2	500		830.60	.019	.084	-08	160	+	\square	42	89	87	2
з.	50		823 168	1033	.098	_10	68	<u> </u>		UR	88	86	2
4	530		833 589	.018	.081	.08	147			60	88	86	2
5	<u>630</u>		834.982	୍ଠର୦	.087	,09	170			59	83	86	ઝ
6	510		83e.070	.013	.056	volo_	178	·		60	88	86	ର
7	550		837.237	1014	.060	.00	177			6	88	86	2
8	560		828.152	1010	,043	·04	BA		\square	10	88	86	2
9	570		839.260	,014	,do	, do	167			6	89	08	2
10 •	680		840.332	<u>~012</u>	,053	:05	164	\perp		<u>59</u>	89	87	R
<u>ц</u>	590		841.442	.016	, Oak	,07	182			0	81	87	2
12	ίøΦ		842.576	,014	, dod	,00.	155			60	89	87	2
pla	60		843.623	.014	.063	.06	147	_/		58	89	87	2
1411	630		844.856	,015	.do7	.07	150	<u> </u>		59	89	30	2
110	630		846-241	* 030	.091	.09	140			60	89	86	· · · · · · · · · · · · · · · · · · ·
<u> </u> 9	640		847.539	<u>+017</u>	, 0 76	.08	150	<u> </u>	 	50		86	
, 8	660		848. Wallo	-014	,059	.06	182		<u> </u>	56	88	86	
8 ^{'7}	600		849.745	1014	. and	·do	146		\bot	<u> 57</u>	89	80	
م) و	670		850.990	.017	.078	<u>.08</u>	137		\square	Go_	89	Blo	2
<u>5</u>	680		852.087	1012	.055	, ao	140			56	රිරි	86	2
4	640		852.977	.01	.049	05	(57			57	·····		2
23	700	œ.	854,138	.017	.075	10 <u>8</u>	ital			69	87	86	2
a a	710	Ę ŚŔ	855.269	,013	,057	.06	167			69	88		2
2	720	13	856.347	<u>6012</u>	,cED,	.05	171			60	87	86	2
2 Notes:	730		·	,015	,066	<u>, 07</u>	163	J		59	36	84	2

2 1 100 Notes: BAShared files/Field/Data Sheets/Method 5/Method 5/2.pdf

PAUSE FOR PH CHERK

4

÷.

HORIZON ENGINEERING 16-5702

49

PAGE 4584

				Whitaker Way						Client	BOLLS	DE.C	YAS.	5
		S	Portland,				•	F	acility I	ocation:	PORIL	AND: (K .	
	HORIZ		•	3) 255-5050		-				Source:	frk pr	ce r	1	
	D-4. //	Tashi	Fax (503)		Glass Nozzłe I	vieasurements , QSBO		ų — — — — — — — — — — — — — — — — — — —			INLE		t Dat	
		hod 55(, llo	1	<u></u>	2883	Probe Q - 2 (g+s) Cp . 33(c4 Heat Set - °F Post-Test Pitot Inspection (NC=no change, D=damaged)						
		ent Testing		·····	3	2570	Siveson	Pitot Lk Rate Pre: Hi () @G Post O @ 7						
•	Run # 🤰					······································	· ·	in H2O@)	Lo		, Č)@0
	Operator	· BC	Support	JM, CH, BS PB	•	<u>ALT-011</u>		Nozzle	3683		Oven	Im). Outlet	
		ture, Ambi		<u>(Ta)</u>		1D/°F) <u>86</u> ?		Filter			107		at Set	
		~3%	Tdb		•	C (ID/°F) <u>(%</u>		Meter Be	100	dH@	1.976			GQ49 inHg
				ess., Bar (Pb) <u>30. [O</u> _If yes, avg. null angle		nuity Cheek 🤅	Dor t	Meter Leak Ch			Pretest:(<u>고 이다.</u> 그에서	cfm cfm	inHg
ł	Traverse	Sampling	Ciock	Dry Gas Meter	Velocity Head	Orlfice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER	METER	METER	Ранар
	Point Number	Time min	Timo (24 lur)	Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	•F	۰F	Filter °F	Outlet F	Inlet/Avg. T	Outlet *F	Vacuum inHg
		(dt)		(Vm)			(Hb)	(Ts) Amb;	(Tp) Amh:	(To) Anıb:	(Ti) Amb:	(Tm-in) Amb:	(Tm-out) Amb:	(Pv)
	.			e:										
	12	.740		858.599	.013	,057	.06	IWQ	\square	1	60	88	86	R
	3	750		8591.6234	.012	. 053	,05	163	<u>\</u>	<u> /</u>	68	87	85	2
	4	760		860.785	.012	630	.05	159	1	<u> </u>	58	Xo	84	ર
	5	770		862.156	.015	, dolo	.07	161		\square	5B	86	84	હ
	6	780		863.542	× 018	.079	108	161			57	87	84	2
×	7	790	233 233 233 233 233 233 233 233 233 233	Se4.725	.013	,050	. do	179			58	87	84	2.
	8	800		ans. 2008	, 020	.085	.09	IB3			57	87	85	2
	9	810		867.738	- 032	101	.10	134			53	87	85	2
	10	820		869.29	<u>~019</u>	.037	.09	140		\square	57	88	85	<u>a</u>
	611	830		870.403	<u>.01</u>	830.	.00	38			59	88	80	2
	<u>12</u>	840		871.714	.015	.071	.07	120			58	5	86	2
•	612	850		873.100	010	.675	108	124			60	89	86	2
	<u> </u>])	0:18		874.597	,019	.089	.69	R1			61	89	87	à
	10	870		875.977	.016	,073	.07	145	\bot	<u> /</u>	ω	90	86	2
	49		ଖ୍ୟାଦ୍ଧ	876.368	·014	,out	106	163	\rightarrow	Ц	60	89	36	Q
	8	390		•						Ц_				
	7 7	<u>B950</u>			<u>,</u>			<u> </u>		\vdash				
	<u>s</u> (c)	,		•				<u> </u>		<u> </u>	 			
	5	·		· ·					\square	$\left - \right $				
	<u>1</u> 4						·		_					
	<u>3</u>			þ						-				
ŀ	22		· ·					<u> </u>	\square				ļ	
De 1	28 5			•							1			
	24			•							<u> </u>			
	2			•					/	}		<u> </u>	[
	Notes:	in a mata mata d	Chaotai Maihaa	5 Melhod 5 v2.pdf	۰.									

B:Shared files/Field/Data Sheets/Method 5/Method 5_v2.pdf

 $\sum_{\substack{i=0,0\\i\in I}}$

HORIZON ENGINEERING 16-5702

	. <i>k</i> r	13585 NE	Whitaker	Way		,210) ,210 ,209 S		<u> </u>		Client:	Billse	ye G	10.55		Π
	Y.	Portland,	OR 97230	· ·		.2104	2096	ŀ	acility I	ocation:	fortia	nd oi	K,		
MON	TROSE		3) 255-5050			,209)				Source:	Final	e_ "[~!~~	- i		
ARE QUAL	ITY. STRVICTS		255-0505			Mensurements	/	Probe 2			p . 224		at Set	°I	6 -]
Date - Test Met	1/32/1 hod Oc	<u>6</u> 76			1 2	250	4.3556			nspection				-damaged)	
	ent Testing	-	+ (govis	es	3	-255-	Smr	Pitot Lk		1	Pre: Hi	<u>`</u>			1
Run #4							4128/16	in H2O(@in H2O)	Lo (r @ ~~	j .
Operator	r MV	Support	PT J	r -		ALT-011	1 - 1.	Nozzle	يكرجي	\$.209	hOven ~			1-35	_
	ture, Ambie		(Тя)			1D/°F) <u>^√√ /</u>	1 774	Filter			1-4-20		nt Set		ז ר
Moisture		Tdb	T tess., <u>Bar (</u> P	Wb		C (ID/°F) <u>'2-1 /</u> nuity Cheek/*1		Meter B Mete		ан@	1. 7-39 Pretest: 6		efm 5		
	tatic (Pstat) Flow Expe			null angle <u>~</u>		nuny Cheen	for t	Leak Ch			Post:	~~	efm -		2
Traverse	Sampling	Cłock	Dry G	as Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER	METER	METER Outlet	Pump Vacuum	1
Point Number	Time min	Tiaw (24 hr)		ading ann	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	٩F	*F	Filler °F	Ouilet °F	Inlet/Avg. °F	۴F	inHg	
	(dt)			489 489			(dFI)	$\frac{(Ts)}{135}$	(Tp) Amb;	(To) Amb:	(Ti) Amb:	(Tm-in) Ambr 68	(Tm-out) Amb; 68	(Pr)	
		- 1	463	. 787					4		- ^{mo:} 3	00	68		-
1	10	1700	465	. 39	,07	.11		141	/	4	40	45	66		-
2	20		461	.30	,07	//	.11	139	\rightarrow	<u> (</u>	(e ?	68	67	<u> l </u>	-
3	30		469	.,0(,00	.10	10	<u>13a</u>	/	L (_	ler	68	24	<u> </u>	-
4	Цо	ı,	4.70	. 400	.04	,06	.06	1.50			62	63	68]	4
5	50		472	: \$9]	.06	.094	,09	163			65	70	68	1	_
. 6	60		473	.107	.02	.03	,03	1.67	- \		63	7	69	1	
7	1:10		474	.678	04	.06	-06	15			64	71	69	.]	
8.	1:20		475	.815	.03	0.05	0.05	155	$\left \right\rangle$		63	72	73	1.	
9	1:30		477	128	્રેઝ્ડ	:05	.05	170			63	72	70	1	
10	1:40		478	.634	_04	.06	,06	172		5	63	73	71	1	_
11 11	1:50		48 <i>0</i>	.040	.,04	. 96	.06	162			62	73	71	1 .	
12	2:as		481	504	.05	08	.08	120	<u>``</u>		60	Ġ8	68	1	
13	みね		483	. 165	, 05	<i>j</i> 08	<i>.08</i>	122	. /		58	68	67	1	
14	2:20		484	. 42-3	,04	. 06	. %	143			57-	67	65	1	
	2:30		485	.885	.04	.06	.06	167	- /		57	67	65	1	
	2:40		487	244	.04	.06	.06	178			57	66	64	1	
. 17	入:50		488	.726	,05	,07-5	.08	182	\sum		57	66	64	1	·
	3:00		490	. 119	,04	- 06	, 06	176			57	66	64	-1	
19	3:10		491	. 421	°03	. 046	,05	160		\sum	57	65	63	1.	
20	3:20		492	.601	,04	. 064	.06	140		(57	65	63	ľ	
21	3:30	·	493	. 840	202	, 04.7	.05	155	\rangle		58	65	63	1	
22	3:40		494	.905	,05	,077-	208	166		ζ		65	63	1	
23	3.50		4	.610	, 05	.076	, 08	172	\sum	7	58	65	63	1	-
24	4:00		497	.256	.01	,015	02	176	1		S7-	65	63	1	
25	4:10		497	887	.01	,315	202	15	\sim	5	58	65	63	1	

Notes:

. . .

í

B:\Shared Ries\Field\Data Sheets\Method 5\Melhod 5_PDX-v1.pdf

1 of 4

.

1

51

腦清

			13585 NE Portland,	Whitaker Way OR 97230	:	£		F	Client: Bullseye Glass Facility Location: Portland, or					
	MON	TROSE	Phone (50	3) 255-5050						Source:	Furne	n.de_``		
		TTY. SERVICES	Fax (503)	255-0505	Giass Nozzle 1 1	Measurements	7	Probe 7			005- 10-8-4		at Set 🦈	
	·	<u> みる/'/6</u> hod のから	{		2	.210	2096	Post-Te						
		ent Testing	5, 3A	-(gassas)	3	.209)	Pitot Lk			Pre: Hi		Post "	
	Run # Operator		Support	PT JH		ALT-011		in H2O(Nozzle			Lo (Oven	$\overline{\mathbf{v}}$	n Outlet	- @ - 1~35
		ture, Ambi		(Ta) —		⊡⁄°F)^√	74	Filter	¥ 170	<u></u>			nt Set 🦈	~~ •F
· · · · · · ·	Moistur		Tdb	Twb	•	C (Ⅲ/ºF) <u>2-</u>		Meter B	_	dH@	1.739			18764
	Cyclonic	-	eted ? <u>ND</u>	ess., Bar (Pb) '3=.] _If yes, avg. null angle	degrees	nuity Check		Mete Leak Ch	eek	l mmt	Pretest: Post:		cím 🦳	5 inHg inHg
	Traverse Point Number	Sampling Time min	Cłock Time (24 hr)	Dry Gas Meter Reading ouft	Velocity Head in H2) (dPs)	Orifico Pressuro in H2O DESIRED	Orifico Prossuro H2O ACTUAL	STACK.	PROBE °F	OVEN Filter °F	IMPINGER Outlet *F	METER Inici/Avg.	METER Oatlet F	Pump Vacuum inHg
	·	(41)	((Vm)	(ui a)	prometo	(dET)	(Ts) Amb:	(Tp) Amb;	(To) Anib:/	(Ti) Amb:	(Tm-is) Amb:	(Tm-out) Amb:	(Pv)
		bia-		499 656	56	,095	01	153	5	- 4-	50	65	12	$ \rightarrow $
	1	4:20 4:30		499.656 500.951	_06 _03	,-1) _047-	-01	151	$\left\{ -\right\}$	$\left \left\langle \cdot \right\rangle \right $	59	66	63 64	
,	2	4:40		502, 135		,047	:05	158 159	+	$\vdash /$	1	66	65	
	3			503.825	.03 .05	081	. 5Z	138	$\overline{)}$		<u>58</u> 58	67	65	-
	4	4:50 5:09		505 232	,05	.079	,08	150	1.	\vdash	57	67	65	
	5	5:10		506 GIb	.04	,062	. 06	158	·)	\vdash	58	68	65	1
	7	5:20		507 915	:04	, 262	.06	163	\top		59	68	65	
	,	5:30		509 440	, 35	,078	.08	161	\mathbf{h}	$\left \right $	59	67	65	
	9	5:40		511.024	- ZC •	.085	.09	110	1	$\left \right\rangle$	57	66	65	<u> </u>
	10	5:50		SH2.666	.05	.085	. 09	140	$\overline{\}$	$\left \right $	57	66	64	
	11 .	6:00	40 22	514 195		.082	.08	127	/		57	66	64	1
	12	6:10		515 800	.,06	, 097	ð. ¢	135	(1	57	Ġŀ	64	1
-	13	6:20		517.621	.06	,10	0,10	120).		57	66	64	1
<i>v</i>	14	6:30		519.307	, 05	.08	.08	138			56	65	63	1
19	15	6:40		520.630	,04	,06	.06	152)	<u>}.</u>	56	65	62	1
	16	6:50		521 888	,03	,046	.05	164		/	57	65	62-	1
	17 -	7:00		523.140	. ,03	<u>_046</u>		167			57	65	62	1
	18	7:10		524.380	.03	,047-	.05	12			54	65	62	<u>t</u>
	19	たい		525.898	<u>°05</u>	.0.79	-08	加干			57-	65	63	
	20	7:30		527.341	. 05	,080,	,08	139	_/	·)	56	65	63	
	21	7:40		529.235	, 06	,096	- ¢0	136		<u> </u>	55		62	<u> </u>
	22	7:50		<u>531 .022</u>	- 06	_099	, 10	63)		64	62	
	23	8:00	1:09	532.496		,079	.08	14 <u>4</u> 4	(5	.54	64	Ø)
آم ا	24	01:8	1:33	532.751	.07	<u>, []</u>	<u>ell</u>	150		<u> </u>	55	62	65	
	25 Notes:	8:20		535 315	.07	, II	μ.ll	142)	6	55	64	63	
	B:\Shared f	iles\Field\Dala	Sheets\Metho	d 5\Melhod 5_PDX-v1.pdf		~					eaa K	- ch	eek	- U
Res	tart	- 24	(1:33)	d = 5.Melhod = 5. PDX-v1.pdf	2	of y	S	32 <i>~</i> -					@5	
		·1_ ··				• #		HOI	RIZON	ENG	NEERI	NG 16	-5702	.

52 .

•

:

<u> </u>		11696 ME	Whitehes	Way						Client	Ð. il.		01.0	
) Whitaker ' OR 97230	way					Facility I	Location:	Bulls	aye_	Slory R	
		Phone (5)	03) 255-5050	0	ļ				<u>-</u>		FURNO			
AFR SQUAL	TROSE	Fax (503)	255-0505		Glass Nozzle	Slass Nozzle Measurements Sample Location: Ortlet								
	1/28/11				1									
	thod 006		с. <i>г</i> 1		2	.20	-	Post-Test Pitot Inspection (NO-no change, D-damag Pitot Lk Rate Pre: Hi A @ 6 Post - @						
Concurr Run # 4	ent Testing	<u> </u>	ses		3	.209	-	Pitet Lk	t Rate @in H2C	•	Pre: Hi			<u>~ @ ~</u>
Operato		Suppor	+ PT.O	гH		ALT-011		Nozzle	ي مركز المر		Oven =	<u> </u>		1-35
	ature, Ambi		(Ta)	-4- -	Sta TC (<u>Ш/°F) М</u>	174	Filter		معر			at Set	~~ °F
Moistur	<u> </u>	Tdb		ſwb 🦳	-	С (D/°F) <u>2~)</u>	, 73	Meter B	0x7.9	dH@	1.9-39			98764
	tatic (Pstat)	P	ress., Bar (H	26) 30.] . null angle_	-	nnity Check 🤇	Dor ↓	Mete			Pretest		cfm LS	
Traverse	Sampling	Clock		, null angle	degrees	Orifico Pressure	Orifice Pressure	Leak Cl STACK	PROBE	OVEN	Post: I IMPINGER	METER	efm ← Meter	∽ iuHg ₽սաթ
Point Number	Time min	Time (24 hr)	R	cading cnfl	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	۴F	⁴F	Filter °F	Outlet °F	Inict/Avg. *F	Outlet F	Vacuum inHg
	(61)	(,		Vm)	()		(d11)	(Is) Amb:	(Tp) Amb:,4	(Fo) Amb; 4	(Ti) Anib;	(Tm-in) Amb;	(Tm-out) Amb:	(Pr)
			~=				-	71010.	[]					
ı	8:30		537	.164	<i>JO3</i>	.048	,05	129			56	64	61	1
2	8:40		<u>538</u>	965	.08	.127	8/3	135	5		57	64	60	
3	8:50			• •	.07	111	oll	135	<u> </u>		56	64	61	1
4	9:00		542	.499	,67	0111	-11	132	\square		54	65	62	[
5	9:10		544	.364	.07	ill	.11	(32			55	65	61	1
6.	9:20		545	.871	,07	5111	<i>,</i> 11	130			54	62	60	1
7	9:30		547	.105	,05	,079	.08	129			55	64	62	
8	9:40		549	.220	.08	,131	,13	131			56	64	40	1.
9	9:50		550	.462	.05	.082	.08	133			55	63	62	1
10	10:25		551	.631	, 04	.065	,07	133			56	64	67	1
11	10:10		552	. 789	.03	,049	,05	129			56	64	62	1
12	10:20		55 3	.571	.03	.049	.05	125		\backslash	56	69	63	1 -
13	10:30		555	.037	.03	.049	:05	128			56	63	64	1
14	10:40		556.	.218	.03	,049	.05	121			56	63	63	
15	10:30			د اس یست. ۱	:03	049	,05	.131			54	65	64	1
16	h:co		558	.509	.05	-082	.08	131			55	64	64	1
17	ji: jo		560	.005	.03	,049	:05	131			56	63	62	1
18	11:20		561	.527	.03	,049	,05	132		\Box	51	64	62	<u></u>
19	11:30		563	.017	003	,049	,03	134			56	62	61	_/
20	11:40			.096	<i>.03</i>	.049	05	132			54		CI	
21	11:50		<i>5</i> 65,10		,03	,049	.05	130			55	262		ì
22	12:00		58 6	.062	<i>。03</i>	.049	.05	129			53	62	62	_{
23	12:10		567	.288	.03	.049	,05	128			54	64	62	1
24	12:20				,03	.049	.05	129			52	04	63	1
25	12:30		\$69	.003	.03	,049	.05	129	l		53	G2	62	

25 Notes:

B:\Shared files\Field\Data Sheets\Method 5\Method 5_PDX-v1.pdf

3 of 4

<u>لم</u>	Á	13585 NF	Whitaker Way	1			ir		Client	Bulles	NO C	-12.45	
			OR 97230				. P	Facility I	ocation:	Dullse Portl	and		
	r J ' Itto o e s	Dhone (50	2) 255 5050				Source: Furnace J7						
	TROSE	Fax (503)	255-0505	Glass Nozzle	Measurements		Sample Location: Outlet-						
	129/16			. 1	, 110		Probe 2.—) (g / s) Cp . 8,243 Heat Set — °F						
	بر سرکه thod			2	.210	-	Post-Test Pitot Inspecti			, <u>,</u> ,			
Concurr Run # 2	ent Testing	5		3	,209	-	Pitot Lk			Pre: Hi	<u>006</u> 006	Post C	
Operato	***	Sunnort	PT, JH		ALT-011		in H2O(Nozzle	, 20		Oven '			9
	ture, Ambi		(Ta) —	- Std TC ((ID/°F) 21	1 74	Filter		~	Orth		at Set	~~ °F
Moisture	: 3%	Tdb	— Туур 🦳	- Stack T	C (Ⅲ/°F) <u>MV</u>	1 73	Meter B	0x29	dH@	1.73	9	Y Ø.,	18764
Promotion and an and	tatic (Pstat)		ress., Bar (Pb) 39.)	Conti	inuity Check	∱ or ↓	Mete			Pretest: a		efm 🚅	j inHg
Traverse	Sompling	Cted 7100	If yes, avg. null angle Dry Gas Meter	degrees	Orifice Pressure	Orifico Pressuro	Leak Ch STACK	eek Probe	OVEN	Post: . (efm (inHg Pump
Point Number	Timo nún	Timo (24 hr)	Reading	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	*p	°F	Filter °F	Outlet °F	Julet/Avg.	Outlet °F	Vacuum
TBUIDE	(dt)	((Vm)	(((1 3)	DESIRED	(dR)	(Ts)	(Tp)	(To)	(Ti)	(Tm-in)	(Tm-out)	inHg (Pv)
			~~~~				Amb;	Amb:	Antb:	Amb:	Amb:	Amb;	
1	12:42		570.251	,03	,041	,05	127		$\left  \left( - \right) \right $	52	62	62	
2	12.50		572.113	,03.	,1149	,05	124		/	52	61	61	
3	13:00		573.973	.03	.049	. 05	123		/	52	60	61	/
4	13:10		574.149	<i>0</i> 3	.049	.05	122			52	62	61	1
5	13:20		575.154	.03	.049	.05	123			51	61	61	/
6	13:30		576.164	.03	,049	.05	123	$\rightarrow$	Ц	52	62	61	1
7	13:40		577 .172	+03	1049	,05	123			52	61	61	
8	13:50		579,223	_02	,0328	,03	125	-	ļ	56	63	62	
9	14:00		580.435	.02	0328	,03	125		l	57 58	65	64	
10	14:10		581.561	,07	8228	. 03	125	_[	$\rightarrow$		64	64	_/
11	14:20		E 07 125	.02	0328		. 7.2	$\rightarrow$	$\vdash$	58		64	
12	14:30		583.627	.03	220	, 05	123		Ц	58	66	(5	
13	14:40		584.721	,02	, 32.8	.03	128	. (	$\square$	60	68	65	)
14	14:50 15:00		585.807	,02	,328		115				67	[	/
15		9100	586.069 587.579	,02	. 328	.03	119	+	$\left  - \right $	60	67	66 67	
16	15:10 15:20		281.271	. 02	.328	. 03	119			27	66	67	1
17	15:30							$\rightarrow$			<b></b>		
18	15:60 15:60		•			· · ·		+					
19 20	15:50		•				· · ·	-{					
20 21	16:00		•										
22	16:								$\mathbf{h}$				
23			T			······							
24													
25			•						1				
Notes:			•		I								

Notes:

÷

B:\Shared files\Field\Data Sheets\Method 6\Method 5_PDX-v1.pdf

4 of 4 * Pause @ 7:33 restart @ 7:39 (r

#### Sample Recovery / Moisture Catch

#### BULLSEYE GLASS GLASS FURNACE T7 -INLET PORTLAND OR

0061				•				MEW
Definitions	Symbol	Units	Run 1a	Run 1b	Run 1c	Run 2	Run 3	
Impinger Contents								
	Impinger, Contents, Condensate & Rinse	g	606.20	578.00	593.00	588.00	656.00	
	Impinger, Contents & Condensate	g	366.00	385.00	400.00	450.00	453.20	
spg (g/m	1) Impinger	g	104.70	104.20	104.80	105.00	104.00	
1.03	25 0.5M KOH (0.5N)	ml	300.00	300.00	300,00	300.00	300.00	
1.00	16 0.1 N HNO3	ml	0.00	0.00	0.00	. 0.00	0.00	
	Condensate	g	-46.20	-26,70	-12.30	37.50	41.70	
	0.5M KOH (0.5N)	ml	300.00	300.00	300,00	300.00	300.00	
	0.1 HNO3	ml	239.81	192.69	192,69	137.78	202.47	
	Sample Correction Volume	ml	534.34	488.29	488.29	434.63	497.85	
	Sample sent to lab	ml	489.27	462.24	476.29	471.22	538,54	
	Sample received by lab	ml	500.00	460.00	485.00	480,00	545.00	
	Diff		2.2%	-0.5%	1.8%	1.9%	1.2%	
Silica Gel Impinger	Final weight	g	1,431.00	765,00	941.00	830,00	904.00	
	Initial weight	g	1,381.00	745.00	926.40	797.00	881.00	
		g	23.00	1.70	5,50	4,40	34.90	
	Gain	g	73.00	21.70	20.10	37.40	57.90	
Total Moisture Gain	Condensate + Silica Gel gain .	g	26.80	-5.00	7.80	74.90	99.60	
Vlc	Net Moisture Gain	ml	26,85	0.00	7.81	75.04	99.78	
	Net Moisture Gain	mļ			34,66			
General Remarks	Sample Appearance		clcar	clear	clear	lt grn	lt grn	
	Container Marked		yes	yes	yes	yes	yes	
	pH of Condensate		9.00	9.00	9.50	9.50	9.50	



MONTROS AIR QUALITY SERVIC	AAII	Sample Recov	ery Worksgeet
Clien		Date ^{, 4}	1/26 4/27/16
	t: <u>Bullseye</u> n: Portland OR		iss Furnace T7
•		Sample Location: <u>I</u>	
	··	eampie needaterin <u>- n</u>	
Balance Calibration (1000, 500, 200 g)	Tolerance must b	e within ± 1.0%	
Need one per each 3-run test	998 1 49	9 1200	
	(1-110 51+ RUN 1 (A	RUN 216	RUN S. ) C
Container, condensate & rinse, grams	-774 606, d	578	593
Container & condensate, grams	366	385	400
Empty container, grams	104.7	104.2	104.8
Initial volume, ml	200	306	300
Initial contents	*5WKOH	KOH	KOH
Initial concentration	0.5 M	0.5M	0.5M
Net water gain, ml			·
Condensate appearance	Clear	Clear	<u>Cheur</u>
Level marked on container	<u> </u>		
pH of condensate	~ 9	~ 9	~ 9.5
Rinsed with	DIHO/0	IN HNO3	
Solvent Name and Lot No.	DI H.O: 2122		<u> </u>
Solvent Name and Lot No.	HN03: 1856-		->
SILICA GEL (w/impinger, top off)		x 4/27/16	autu
Final weight, grams	791 640	5F 520. 745	94/
Initial weight, grams	741 520 620	SF 4-27 520 745	520 976, 4
Net gain, grams			
TOTAL MOISTURE GAIN			
Impingers and silica gel, grams			<u> </u>
FILTERS			
Front filter number			

4/26

2237

Ńц

Front filter appearance

Back filter number

Shared files/Field/Data Sheets/Sample Recovery/Sample Recovery_PDX-v1.pdf

HORIZON ENGINEERING 16-5702

Purge 4/27

03:27-03:57 @ 10 L/min

Purge 4/27 09:53-

@10 Unin



13585 NE Whitaker Way

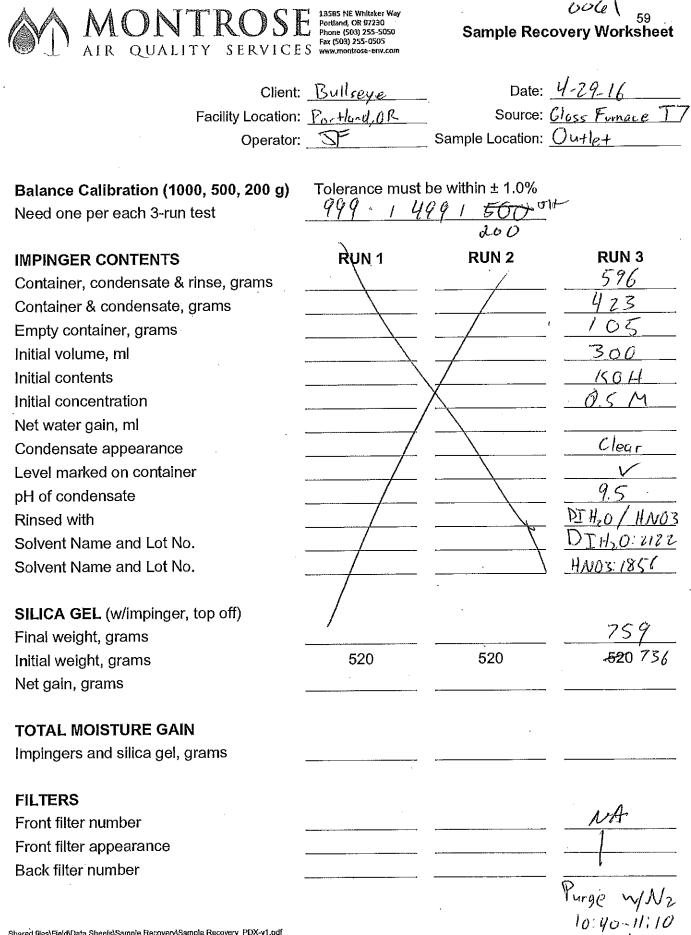
### Sample Recovery Worksheet

Ψl

Date:  $\frac{4}{26} - \frac{4}{28}$ Source:  $\frac{17}{7}$ Client:  $\underline{Bullseye}$  Date:  $\underline{4/2e-4}$ Facility Location:  $\underline{Br4/uloR}$  Source:  $\underline{T7}$ Operator:  $\underline{TF} \underline{JlF}$  Sample Location:  $\underline{JuleF}$ 

Balance Calibration (1000, 500, 200 g) Need one per each 3-run test

Tolerance must be within ± 1.0% 998. 1499 1200


#### RUN 3 RUN 2 RUN 1 **IMPINGER CONTENTS** 58.8 656 Container, condensate & rinse, grams 4537 450 Container & condensate, grams 105 104 Empty container, grams 30B 300 Initial volume, ml KGH. KOH Initial contents 0.5M 0.5 M Initial concentration Net water gain, ml listot gleen light grn tint Condensate appearance Level marked on container .9.5 pH of condensate DI HOO/ HNO3 Rinsed with PIHO: 2122 Solvent Name and Lot No. HNAS Solvent Name and Lot No. SILICA GEL (w/impinger, top off) <u>830</u> F 520 797 Final weight, grams 520 Initial weight, grams Net gain, grams **TOTAL MOISTURE GAIN** Impingers and silica gel, grams FILTERS NA NA Front filter number Front filter appearance Back filter number Purgo W NZ 09:27- 09:57 Purge WNZ 09:45-10.15 104min Shared files\Field\Data Sheets\Sample Recovery\Sample Recovery_PDX-v1.pdf 10 1/min

### Sample Recovery / Moisture Catch

## BULLSEYE GLASS FURNACE T7 -OUTLET PORTLAND OR

## 28-Apr-16 JTF,JH,JL,BC,BS,PB,CH

				MEW
Definitions	Symbol	Units	Run 3	
Impinger Contents				
	Impinger, Contents, Condensate & Rinse	g	596.00	
	Impinger, Contents & Condensate	g	423.00	
	/inl) Impinger	g	105.00	
	.025 0.5M KOH (0.5N)	ml	300.00	
1.0	0016 0.1 N HNO3	ml	0.00	
	Condensate	g	10.50	
	0.5M KOH (0.5N)	ml	300.00	
	0.1 HNO3	ml	172.72	
	Sample Correction Volume	ml	468.78	
	Sample sent to lab	ml	479.02	
	Sample received by lab	ml	485.00	
	Diff		1.2%	
Silica Gel Impinger	Final weight	g	759.00	
	Initial weight	g	736.00	
		g		
	Gain	g	23.00	
Total Moisture Gain	Condensate + Silica Gel gain	g	33,50	
Vlc	Net Moisture Gain	ml	33.56	
General Remarks	Sample Appearance		clear	
	Container Marked		yes	
	pH of Condensate		9.50	



Shared files\Field\Data Sheets\Sample Recovery\Sample Recovery_PDX-v1.pdf

#### BULLSEYE GLASS GLASS FURNACE T7

### Apr 26-28, 2016 JTF,JH,JL,BC,BS,PB,CH

1

							 		iew	
		DECLUZ	re			TZ I		DRRECTED		
		RESULT	12		BLAN	ĸ	1	RESULTS	TOTAL	TOTAL
					TOTAL CHR	LOME			IOIAL	IUIAL
INLET		ml	ug/L		ml	ug/L	ug	mg	mg	mg
1A	FILTER	250	32.4		250	0	8.10	0.0081		
	0.1 N HNO3	250	45.8		250	0	11.45	0.0115		
	КОН	500	1070		790	0.843	534.33	0.5343	0.5539	
1B	FILTER	250	82		250	0	20.50	0.0205		
	0.1 N HNO3	250	16,7		250	0	4.18	0.0042		
	КОН	460	549		790	0.843	251.87	0.2519	0.2765	
1C	FILTER	250	35,1		250	0	8.78	0.0088		
	0.1 N HNO3	250	18.3		250	0	4,58	0.0046		
	КОН	485	1990		790	0.843	964.48	0.9645	0.9778	1.8083
2	FILTER	250	33,6		250	0	8.40	0.0084		
	0.1 N HNO3	250	8.04		250	0	2.01	0.0020		
	КОН	480	2020		790	0.843	968.93	0.9689		0.9793
3	FILTER	250	36,9		250	0	9.23	0.0092		
	0.1 N HNO3	250	2.74		250	0	0.69	0.0007		
	КОН	545	790		790	0.843	429.88	0.4299		0.4398
OUTLET		ml	ug/L		ml	ug/L	ug	mg		mg
3	FILTER	250	26.1		250	0	6.53	0.0065		
	0.1 N HNO3	250	1.1		250	0	0.28	0.0003		
	КОН	485	198		790	0.843	95.36	0.0954		0.1022
	Г						CC	DRRECTED		
		RESULT	ſS		BLAN	К	I	RESULTS		
				HE	EXAVALENT	CHROME			TOTAL	TOTAL
INLET		ml	ug/L		ml	ug/L	ug	mg	mg	mg
1A	КОН	500	1040		790	0,843	519.33	0.5193	0.5193	
1B	КОН	460	559		790	0.843	256.47	0.2565	0.2565	
1C	КОН	485	2050		790	0.843	993.58	0.9936	0.9936	1.7694
2	КОН	480	2160		790	0.843	1,036.13	1.0361		1.0361
3	КОН	545	790		790	0.843	429.88	0.4299		0.4299
OUTLET		mł	ug/L		ml	ug/L	ug	тg		mg
	201					_				
3	KOH	485	205		790	0.843	 98.76	0.0988		0.0988

# HORIZON ENGINEERING

# PROJECT: 57202-BULLSEYE GLASS

CLIENT # H007 REPORT # 16-271

> SUBMITTED BY: CHESTER LabNet 12242 S.W. GARDEN PLACE TIGARD, OR 97223

Tigard, OR 97223 (503)624-2183/Fax (503)624-2653 www.ChesterLab.Net



12242 SW Garden Place & Tigard, OR 97223-8246 & USA Telephone 503-624-2183 * Fax 503-624-2653 * www.chesterlab.net

# **Case Narrative**

Date: May 5, 2016

### **General Information**

Client:	Horizon Engineering
onom,	110tt20ff Engineering

Client Number: H007

Report Number: 16-271

Sample Description: Impinger Trains

Sample Numbers: 16-S425 - 14-S447

#### Analysis

Analytes:	Cr VI, Total Cr

SW-846 Method 0061 Analytical Protocols:

Analytical Notes:

IC-PCR was used to measure hexavalent chromium and ICP was used to measure total chromium. The filter and probe rinse samples were digested per EPA method 29 and taken to 250 mL prior to analysis by ICP. Results have not been blank corrected,

QA/QC Review:

All of the data have been reviewed by the analysts performing the analyses and the project manager. All of the quality control and sample-specific information in this package is complete and meets or exceeds the minimum requirements for acceptability.

Comments:

If you have any questions or concerns regarding this analysis, please feel free to contact the project manager.

Disclaimer:

This report shall not be reproduced, except in full, without the written approval of the laboratory. The results only represent that of the samples as received into the laboratory.

5/5/16

Project Manager Paul Duda

Date

Lab ID: Client ID: Site: Sample Dàte: Sample Volume:	16-S425 lA Teflon Filter Inl Bullseye Glass 4/27/16 250. mL	let		
Analyte	µg/L Conc. MDL	µg/sa Conc.	ple MDL	
Total Cr	32.4 0.500	8,11	0.125	
Lab ID: Client ID; Site: Sample Date: Sample Volume:	16-S426 1A HNO3 Rinse Inlet Bullseye Glass 4/27/16 250, mL			
Analyte	µg/L Conc. MDL	µg/sa Conc.	ple MDL	
Total Cr	45.8 0.500	11.5	0.125	
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S427 1A KOH Imp Inlet Bullseye Glass 4/27/16 500. mL			
Analyte	µg/L Conc. MDL	µg/sa Conc.	ple MDL	
Cr VI Total Cr	1040 0.020 1070 0.500	518. 536.	0.010 0.250	
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S428 1B Teflon Filter Inl Bullseye Glass 4/27/16 250. mL	et		
Analyte	µg/L Conc. MDL	µg/sa Conc,	ple MDL	
Total Cr	82.0 0.500	20.5	0.125	
Lab ID:	16-5429			
Client ID: Site: Sample Date: Sample Volume:	1B HNO3 Rinse Inlet Bullseye Glass 4/27/16			
Site: Sample Date:	1B HNO3 Rinse Inlet Bullseye Glass 4/27/16	µg/sa Conc.	ple MDL	

Analysis performed by: CHESTER LabNet 12242 SW Garden Place + Tigard, OR 97223 + (503) 624-2183 + www.chesterlab.net HORIZON ENGINEERING 16-5702

Lab ID: 16-S430 Client ID: 1B KOH Imp In: Site: Bullseye Glass		
Sample Date: 4/27/16 Sample Volume: 460. mL		
µg/L Analyte Conc. MDL	μg/sample Conc. MDL	
Cr VI 559. 0.020 Total Cr 549. 0.500	257. 0.009 253. 0.230	
Lab ID: 16-5431 Client ID: 1C Teflon Filt Site: Bullseye Glass Sample Date: 4/27/16 Sample Volume: 250. mL		
µg/L Analyte Conc. MDL	µg/sample Conc. MDL	
Total Cr 35.1 0.500	8.78 0.125	
Lab ID: 16-S432 Client ID: 1C HNO3 Rinse Site: Bullseye Glass Sample Date: 4/27/16 Sample Volume: 250. mL		
μg/L Analyte Conc. MDL	μg/sample Conc. MDL	
Total Cr 18.3 0.500	4.57 0.125	
Lab ID: 16-S433 Client ID: 1C KOH Imp In Site: Bullseye Glass Sample Date: 4/27/16 Sample Volume: 485. mL		
µg/L Analyte Conc. MDL	µg/sample Conc. MDL	
Cr VI         2050         0.020           Total Cr         1990         0.500	994. 0.010 964. 0.242	
	16-S434 2 Teflon Filter Inlet Bullseye Glass 4/28/16 250. mL	
Client ID: 2 Teflon Filte Site: Bullseye Glass		
Client ID: 2 Teflon Filte Site: Bullseye Glass Sample Date: 4/28/16		

Analysis performed by: CHESTER LabNet 12242 SW Garden Place + Tigard, OR 97223 + (503) 624-2183 + www.chesterlab.net HORIZON ENGINEERING 16-5702

Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S435 2 HNO3 Rinse Inlet Bullseye Glass 4/28/16 250. mL			
Analyte	μg/L Conc. MDL	μg/sa Conc.	ample MDL	
Total Cr	8.04 0.500	2.01	0.125	
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S436 2 KOH Imp Inlet Bullseye Glass 4/28/16 480, mL			
Analyte	µg/L Conc. MDL	μg/sa Conc.	ample MDL	
Cr VI Total Cr	2160 0.020 2020 0.500	1,030 972.	0.010 0.240	
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S437 3 Teflon Filter Inl Bullseye Glass 4/29/16 250. mL	et		
Analyte	μg/L Conc. MDL	μg/sa Conc.	ample MDL	
Total Cr	36.9 0.500	9,22	0.125	
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S438 3 HNO3 Rinse Inlet Bullseye Glass 4/29/16 250. mL			
Analyte	µg/L Conc. MDL	μg/sa Conc.	ample MDL	
Total Cr	2.74 0.500	0.684	0.125	
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S439 3 KOH Imp Inlet Bullseye Glass 4/29/16 545. mL			
Analyte	µg/L Conc. MDL	µg/sample DL Conc. MDL		
Cr VI Total Cr	790.         0.020           790.         0.500	431. 431.	0.011 0.272	

Analysis performed by: CHESTER LabNet 12242 SW Garden Place + Tigard, OR 97223 + (503) 624-2183 + www.chesterlab.net HORIZON ENGINEERING 16-5702

H007 - Horizon Engineering Client: Report Number: 16-271 Lab TD: 16-S440 Client ID: 3 Teflon Filter Outlet Bullseye Glass Site: Sample Date: 4/29/16 Sample Volume: 250. mL µg/L µg/sample Analyte Conc. MDLConc. MDL0.500 Total Cr 26.1 6.52 0.125 Lab ID: 16-S441 Client ID: 3 HNO3 Rinse Outlet Site: Bullseye Glass 4/29/16 Sample Date: Sample Volume: 250. mL µg/sample μg/L Analyte Conc. MDLConc. MDL Total Cr 0.500 1.10 0.276 0.125 Lab ID: 16-S442 3 KOH Imp Outlet Client ID: Site: Bullseye Glass Sample Date: 4/29/16 Sample Volume: 485. mL µg/L µg/sample Analyte Conc. MDLConc. MDLCr VI 205. 0.020 99.4 0.010 Total Cr 198. 0.500 95.8 0.242 Lab ID: 16-S443 Client ID: Filter Blank #1 Site: Bullseye Glass Sample Date: 4/28/16 Sample Volume: 250. mL µg/L µg/sample Analyte Conc. MDLConc. MDL Total Cr < MDL 0.500 < MDL 0,125 Lab ID: 16 - 5444Client ID: Filter Blank #2 Bullseye Glass Site: Sample Date: 4/28/16 Sample Volume: 250. mL µg/L µg/sample Analyte Conc. MDL Conc. MDLTotal Cr < MDL 0.500 < MDL0.125

Analysis performed by: CHESTER LabNet 12242 SW Garden Place 

Tigard, OR 97223 

(503) 624-2183 

www.chesterlab.net

Page 6 of 13

HORIZON ENGINEERING 16-5702

66

Client: H007 - Horizon Engineering Report Number: 16-271

Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S445 H2O Blank Bullseye Glass 4/28/16 ; 250. mL	
Analyte	µg/L Conc. MDL	µg/sample Conc. MDL
Total Cr	< MDL 0.500	< MDL 0.125
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S446 0.1N HNO3 Blank Bullseye Glass 4/28/16 250. mL	
Analyte	µg/L Conc. MDL	µg/sample Conc. MDL
Total Cr	< MDL 0.500	< MDL 0.125
Lab ID: Client ID: Site: Sample Date: Sample Volume:	16-S447 KOH Blank Bullseye Glass 4/28/16 790. mL	
Analyte	µg/L Conc. MDL	µg/sample Conc. MDL
Cr VI	1.06 0.020	0,837 0.016

Analysis performed by: CHESTER LabNet 12242 SW Garden Place + Tigard, OR 97223 + (503) 624-2183 + www.chesterlab.net HORIZON ENGINEERING 16-5702

Client Name:	Horizon Engineering
Project Number:	H007
Analytical Technique:	
Sample Description:	SW-846 0061 filter and probe rinse
Report Number:	16-271

## Blank Data

Analyte	Sample ID	Measured Conc. $\mu$ g/L	MDL Conc. µg/L
Cr Cr Cr Cr Cr	ICB Prep_Blk CCB CCB CCB	< MDL < MDL < MDL < MDL < MDL < MDL	0.500 0.500 0.500 0.500 0.500 0.500

*: Method Blank concentration in  $\mu$ g/filter

## Calibration QC

Analyte	Sample ID	Standard Conc. $\mu$ g/L	Measured Conc. $\mu$ g/L	Percent Recovery
Cr Cr Cr Cr Cr Cr Cr	ICV CRI CCV CCV CCV CCV CCV	2500 2.50 2500 2500 2500 2500	$2510 \\ 2.74 \\ 2420 \\ 2450 \\ 2380 \\ 2320$	100.3 109.6 96.7 98.0 95.4 92.8

CRI Limits: 70% - 130% Recovery

Replicate Data

Analyte	Sample ID	Sample Conc. $\mu$ g/L	Replicate Conc. µg/L	RPD
Cr	16-S425	32.45	34.73	6.79
Cr	16-S426	45.84	45.12	1.58
Cr	16-S440	26.07	26.78	2.69
Cr	16-S441	1.105	0.820	29.6 #

RPD = {(sample-replicate)/[(sample+replicate)/2]}x100

N/C: RPD is not calculated when sample or replicate is below detection limit

#: per EPA CLP protocol, control limits do not apply if sample and/or

replicate concentration is less than 5x the detection limit

## Laboratory Control Sample/Matrix Post Spike Analysis

Analyte	Sample	Sample	Spike	Spike	Percent
	ID	Conc. $\mu$ g/L	Conc. µg/L	Amount µg/L	Recovery
Cr	16-S428	82.05	2451.	2500.	94.8
Cr	16-S429	16.68	2374.	2500.	94.3
Cr	16-S440	26.07	2461.	2500.	97.4
Cr	16-S441	1.105	2376.	2500.	95.0

Percent Recovery = (spike - sample)/spike amount*100

*: per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Duplicates: 20% RPD

LCS: ± 20% Spikes: ± 25%

## QA/QC Report

Client Name:	Horizon Engineering
Project Number:	H007
	IC-PCR
Sample Description:	SW-846 Method 0061 Impinger Catch
Report Number:	16-271
	***************************************

## Blank Data

Analyte	Sample	Measured	MDL
	ID	Conc. µg/L	Conc. µg/L
Cr VI	ICB	< MDL	0.020
Cr VI	CCB	< MDL	0.020

*: Method Blank concentration in  $\mu$ g/filter

## Calibration QC

Analyte	Sample ID	Standard Conc. $\mu$ g/L	Measured Conc. $\mu$ g/L	Percent Recovery
Cr VI	ICV	1.00	0.98	97.9
Cr VI	CCV	1.00	0.95	95.2

## Duplicate Data

Analyte	Sample ID	Sample Conc. µg/L	Replicate Conc. µg/L	RPD
Cr VI	16-5427	1040	1010	2,64

RPD = {(sample-duplicate)/[(sample+duplicate)/2]}x100

N/C: RPD is not calculated when sample or duplicate is below detection limit #: per EPA CLP protocol, control limits do not apply if sample and/or

duplicate concentration is less than 5x the detection limit

## Laboratory Control Sample/Matrix Spike Analysis

Analyte	Sample ID	Sample Conc. µg/L	Spike Conc. µg/L	Spike Amount µg/L	Percent Recovery
Cr VI	16-5439	790.	1810	1000	102.

*: per EPA CLP protocol, control limits do not apply if spike

concentration is less than 25% of the sample concentration

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

LCS: ± 20% Post Spikes: ± 25%

Client Name:	Horizon Engineering
Project Number:	H007
Analytical Technique:	ICP - Optima 8300
Sample Description:	SW-846 Method 0061 Impinger Catch
Report Number:	16-271
=======================================	

## Blank Data

Analyte	Sample	Measured	MDL
	ID	Conc. µg/L	Conc. µg/L
Cr	ICB	< MDL	0.500
Cr	CCB	< MDL	0.500

*: Method Blank concentration in  $\mu$ g/filter

## Calibration QC

Analyte	Sample ID	Standard Conc. $\mu$ g/L	Measured Conc. µg/L	Percent Recovery
Cr	ICV	2500	2480	99.4
Cr	CRI	<i>2.50</i>	2.55	102.2
Cr	CCV	2500	2510	100.5

CRI Limits: 70% - 130% Recovery

## Duplicate Data

Analyte	Sample ID	Sample Conc. µg/L	Duplicate Conc. µg/L	RPD
Cr	16-S427	1071.	1075.	0.37

RPD = {(sample-duplicate)/[(sample+duplicate)/2]}x100

N/C: RPD is not calculated when sample or duplicate is below detection limit

#: per EPA CLP protocol, control limits do not apply if sample and/or

duplicate concentration is less than 5x the detection limit

## Laboratory Control Sample/Matrix Spike Analysis

Analyte	Sample	Sample	Spike	Spike	Percent
	ID	Conc. µg/L	Conc. µg/L	Amount µg/L	Recovery
Cr	16-8430	549,3	2821.	2500.	90.9

*: per RPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

<u>QA/QC Limits</u> Continuing Calibration: <u>+</u> 10% Duplicates: 20% RPD

LCS: ± 20% Spikes: ± 25%

## CHESTER LABNET SOURCE SAMPLE RECEIPT CHECKLIST

Client	Horizon	Date	5/2/16
# Runs	6 + BIKS	Report #	<u> </u>
Custody Se	als Inspected, if Present	-	NA
Chain-of-C	CoC indicate if compliance t M26 samples have Thiosulf M29 indicate FH/BH separa Has Form Been Signed?	hodology to be used? (eg M29 testing? (esp. M26) ate added in field?	Not Stated II NA III NA II
	Do All Sample ID Numbers I Did client mark sample vol If required by method, did Are the Sample Containers Are signs of leakage presen	client vent samples prior to shi Intact? nt?	
Chain-of-(	Custody Form Signed and Date	d by CLN	
Corrective		aking Sample Container(s) ation of methodology? ented?	5 GI31110 Junes
		prior to any analytical work be se narrotive upon reporting of 	
Notes			
	·		<u></u>
<del>.</del>	<u> </u>	, <u></u>	
<u></u>			

HORIZON ENGINEERING 16-5702

Contact E-Mail Addr	1200 Eng. 1200 Eng. 1200 Eng. 1200 Eng. NE White and 255	50 Fai troxe - 201	1.com		1224, Tigar (503) Fax ( cln@	<b>EST</b> 2 SW ( 624-2 503) 6 cheste	Garder 97223 183 24-26 rlab.no	n Plac 53 et	ce		ŌĒ	ργ	RE	<b>CORD</b> Page <u>j</u> of <u>l</u>
PO#	Pro	ject 57207	2-Bollseac	G-1865			Α	nalys	sis R	Requ	leste	d		
														Turn Around Time □ ∕ Standard ☑ Rush <u>\ASAP</u> Specify
LabNet ID	Field Sample ID	Site	Sample Date	Volume (m³)	Particle Size									Remarks
16-5425	I.A. teflon fille	-Inles	4/27/16											-
4.76	I.A. HNOS Ringe		ч											
427	IA KOH IMP.	Inlet	£1											
428,424,430	1B (Same as 1A	) Inlet	14				- T.	E	-					3 Samples
43(,432,433	10 (same as 1)		\t			4	フレ				~			3 Samples
434,435,436	Z (some as ) A	Inlet	4/2011b			6			$\boldsymbol{\boldsymbol{<}}$	E	$\supset$			3 Samples
W34,439,439			4121/16	······································			1	$\mathbb{N}^{\mathbb{O}}$						3 samples
440,441,442		Sutlet	4129/16	······										3 Samples
16-5445	H20 Blank		4/28/16	<u> </u>										
ՏԿԿե	IN ANDA B	olank —	4/28/16											· ·
SUKT	KON Blank	<u> </u>	4/28/16											
443,444	Filter Blank	5(x2)	4/28/16	· · · · · · · · · · · ·	1-		.i6							Forat Samples: Zsample
Relinquished	By: (Signature) Dat	e/Time 5/2/16	Received By:	(Signature) D HU// ( Gignature) D	<u>JUU:</u> ate/Time		Notes	s: - IPA	oc oc	al : >(e1	⊃~~ Ans	ple Nys:	5°, 2 5 00	

Total Cr

72 À

Zsamples

## RAW DATA

Available upon request

BULLSEYE GLASS GLASS FURNACE T7 -INLET PORTLAND OR EPA 1 4/26 - 4/29/2016 JTF,JH,JL,BC,BS,PB,CH

Outer Circumference	Со	in						
Wall thickness	t	in			-	N Down St	ream	
	_						— L- Distu	rbance
INSIDE of FAR WALL	F	in	1	13.75	ļ			
to OUTSIDE of Nipple	N	in		1 75	A	I	Port	
to OUTSIDE of Nipple	IN I	111		1.75		, Ds		
STACK WALL to	N-t	:			· · · · · · · · · · · · · · · · · · ·	F "	<u> </u>	Co
to OUTSIDE of Nipple	IN-L	in						V
DOWNstream Disturb	А	in		40.0				Çi
UPstream Disturb	B	in		30.0				<b>X</b>
Inner Diameter	Ds	in		12	B			
Area	As	sqin	1	12	ם ו	Λ.		
DOWNstream Ratio	A/Ds	9.J.11	1	3.33	Í			
UPstream Ratio	B/Ds			2.50		Flow		
· · · · · · · · · · · · · · · · · · ·				2100				
Minimum #Pts (Particulate)				24			 Distu	rbance
Minimum #Pts/Diameter				12		/		
Minimum #Pts (NON-Particul	late)			16			\	
Minimum #Pts/Diameter				8		Up Stream	\	
Actual Points per Diameter				12		/	\	
Actual Points Used							<b>\</b>	
Trav	Fract	Stack	Actual			Adjusted	Traverse	Traverse
Pt	Stk ID	D	Points			Points	Points	Points
#No	(f)	(Ds)	(Dsxf)	(*	TP)	(TP)	(TP + N)	(TP + N)
. 1	2.13%	12.0		0.3	0.05	0.5	0.05	0 1 ( 4
2	2.13% 6.70%			0.3	0.25 0.75	0.5 0.75		2 1 / 4 2 1 / 2
3	11.81%			0.8 1.4	1.375	1.375		2 1 / 2 3 1 / 8
4	17.73%			2.1	2.125	2.125		37/8
5	25.00%			3.0	2.125	2.125		43/4
6	35.57%	12.0		4.3	4.25	4.25		6
7	64.43%	12.0		7.7	7.75	7.75		91/2
8	75.00%	12.0		9.0	9	9		10 3 / 4
9	82.27%	12.0		9.9	9.875	9.875	11.625	11 5 / 8
9 10	82.27% 88.19%	12.0 12.0		9.9 10.6	9.875	9.875		
							12.375	

13585 NE Whitaker Way Portland, OR 97230 Phone (503) 255-5050 Fax (503) 255-0505 () A I R( SERVICES Fax (503) 255-0505 www.montrose-env.com AIR QUALITY

## EPA METHOD 1 TRAVERSE POINT LOCATIONS ,

Client:	By Isey	e Glass	
Source	: Class	Fyrmace	TZ
Date: _	+12.6116		

Location (inches)

24

2

1/2

3 1/8

3 7/8

<u>6</u> 91

4 34

3/

231

3

13 34

1

3/Q

Traverse Point

Number

1

2

3

4

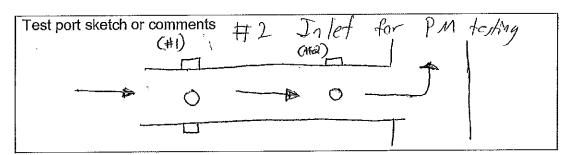
5 6

7

8

9

10


11

12

**Traverse Point** 

Facility Location:	Portland
Sample Location:	Inlet
Initials: <u></u>	

Duct Dimensions and Port Locations
Inside of far wall to outside of nipple, F 13 34 in
Inside of near wall to outside of nipple, N 134 in
Nearest downstream disturbance, A
Nearest upstream disturbance, B <u>57 in</u>
Circular: Inside Diameter, F-N <u>12, n</u>
Rectangular: Width <u>Na</u> " Depth <u>Na</u> "
Rectangular Equiv. Diameter: (2*W*D)/(W+D)"
Number of Ports:
Duct characteristics:
Construction: Steel PVC Fiberglas Other
Shape: Circular Rectangular Elliptical
Orientation: Vertical (Horizontal) Diagonal (~ angle:°)
Flow straighteners: Yes No
Stack Extension: Yes No
Cyclonic Flow Expected: Yes (No)
Cyclonic Flow Measured & Documented: (Yes) No
Average Null Angle <20°: Yes No N/A
Meets EPA M-1 Criteria: Yes No (If "No", explain why)



Shared files/Field/Data Sheets/Method 1/Method 1_PDX-v1.pdf

ł

BULLSEYE GLASS FURNACE T7 -OUTLET PORTLAND OR EPA 1 28-Apr-16 JTF,JH,JL,BC,BS,PB,CH

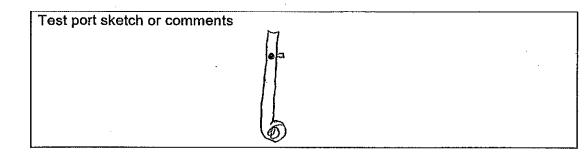
EPA 1							MEW	
			EAST				1,112 ()	
Outer Circumference	Со	in						•
Wall thickness	t	in						
INSIDE of FAR WALL to OUTSIDE of Nipple	F	in	14.	.00				
INSIDE of NEAR WALL to OUTSIDE of Nipple	N	in	1.6	25				
STACK WALL to to OUTSIDE of Nipple	N-t	in						
DOWNstream Disturb	А	in	27	7.5		r Down St	~~~~~	,
UPstream Disturb	В	in		9.5	·····	J Down So		rbance
Inner Diameter	Ds	in	12.3		· A		Port	
Area	As	sqin	120	).3		Ds		
DOWNstream Ratio	A/Ds	-	2.	22		► F		Co
UPstream Ratio	B/Ds		5.	62	B			C C
Minimum #Pts (Particulate)				20		1 个	> {`t	Martin and Andrews
Minimum #Pts/Diameter				10		Flow		
Minimum #Pts (NON-Particu	late)			16		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L<	urbance
Minimum #Pts/Diameter				8	1		$\backslash$	
Actual Points per Diameter				12		Up Stream		
Actual Points Used								
Trav	Fract	Stack	Actual	Neare	est	Adjusted	Traverse	Traverse
Pt	Stk ID	D	Points	8ths		Points	Points	Points
#No	(f)	(Ds)	(Dsxf)	(TP)		(TP)	(TP + N)	(TP + N)
1	2.13%	12.4	(	).3	0.25	0.5	2.125	2 1 / 3
2	6.70%			).8	0.875	0.875		2 1 / 2
3	1 <b>1.8</b> 1%	12.4	1	1.5	1.5	1.5	3.125	3 1 / 3
4	17.73%	12.4	2	2.2	2.25	2.25		37/3
5	25.00%	12.4	3	3.1	3.125	3.125	4.75	43/4
6	35.57%	12.4	4	1.4	4.375	4.375	6	6
7	64.43%	12.4	8	3.0	8	8	9.625	95/
8	75.00%	12.4		9.3	9.25	9.25		10 7 /
9	82.27%	12.4	10	),2	10.125	10.125	11.75	11 3 / -
10	88.19%	12.4		),9	10.875	10.875		12 1 / 2
11	93.30%			1.5	11.5	11.5		13 1 / 3
12	97.87%	12.4		2.1	12.125	11.875	13.5	13 1 / 2

BULLSEYE GLASS FURNACE T7 -OUTLET PORTLAND OR EPA 1 28-Apr-16 JTF,JH,JL,BC,BS,PB,CH

EPA 1							MEW	
			WEST					
Outer Circumference	Co	in						
Wall thickness	t	in						
INSIDE of FAR WALL to OUTSIDE of Nipple	F	in		13.88				
INSIDE of NEAR WALL to OUTSIDE of Nipple	N ,	in		1.625				
STACK WALL to to OUTSIDE of Nipple	N-t	in						
DOWNstream Disturb	А	in		39.0		Down St	ream	1
UPstream Disturb	в	in		57.0	-		Distu	rbance
Inner Diameter	Ds	in		12.25		Å	Port	
Area	As	sqin		117.9	_	Us	N	
DOWNstream Ratio	A/Ds			3.18		Γ F		
UPstream Ratio	B/Ds			4.65	E			
Minimum #Pts (Particulate )				24		Flow		
Minimum #Pts/Diameter				12		FIOW		
Minimum #Pts (NON-Particul	ate)			16	_	└╭Ĵ┻═╌┤─────	Distu	rbance
Minimum #Pts/Diameter				8				
Actual Points per Diameter				12		Up Stream		
Actual Points Used					/_			
Trav	Fract	Stack	Actual		Nearest	Adjusted	Traverse	Traverse
Pt	Stk ID	D	Points		8ths	Points	Points	Points
#No	(f)	(Ds)	(Dsxf)		(TP)	(TP)	<u>(TP + N)</u>	(TP + N)
. 1	2.13%	12.3		0.3	0.2	5 0.5	2.125	21/8
2	6.70%	12.3		0.8	0.87	5 0.875	2.5	2 1 / 2
3	11.81%	12.3		1.4	1.	5 1.5	3,125	31/8
4	17.73%			2.2	2.12	5 2.125	3.75	33/4
5	25.00%			3.1	3.12	5 3,125	4.75	4 3 / 4
6	35.57%	12.3		4.4	4.37	5 4.375	6	6
7	64.43%	12.3		7.9	7.87	5. 7.875	9.5	91/2
8	75.00%	12.3		9.2	9.2	5 9.25	10.875	10 7 / 8
9	82.27%	12.3		10.1	10.12	5 10.125	11.75	11 3 / 4
10	88.19%	12.3		10.8	10.7	5 10.75	12.375	12 3 / 8
11	93.30%	12.3		11.4	11.37	5 11.375	13	13
12	97.87%	12.3		12.0	1	2 11.75	13.375	13 3 / 8



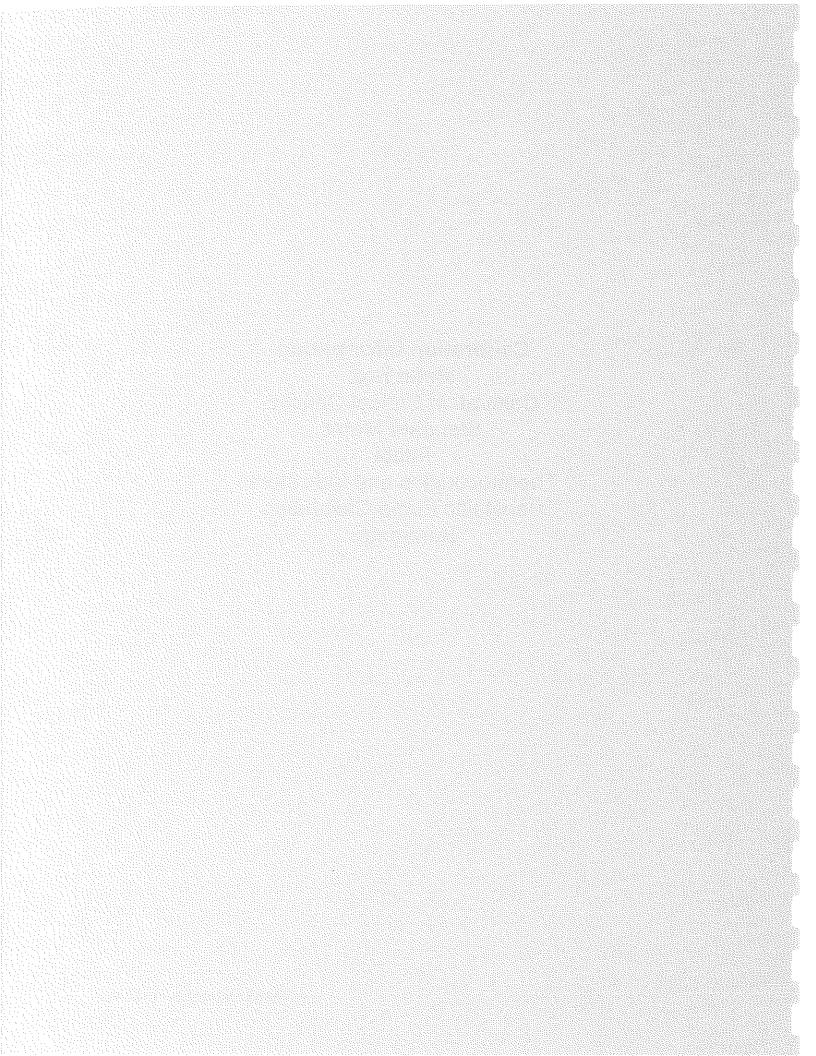
## **EPA METHOD 1**


Client: Bullseve G Source: Date: 6 ь

. .

TRAVERSE POINT LOCATIONS BEVE GIRES Facility Location: HORTIAND OR - Brighouse outlet Sample Location: ROOF Initials: Pr Top Ports

Traverse	Traverse Point					
Point	Locatio					
Number	(inches		Ē			
1	21/8	21/2				
2	21/2	21/2				
3	3 1/8	31/8				
4	37/8	3 <i>3</i> 4 4 <i>3</i> 4				
5	43/4	4 3/4				
6	6	6				
7	9.5/8	91/2				
8	107/8	1078				
9	11 3/4	í1 <i>₹</i> 4				
10	121/2	123/8				
11	131/8 131/2	13	•			
12	13 1/z.	133/8				
	٤	$\omega$				


·
Duct Dimensions and Port Locations $\not \models  \omega$
Inside of far wall to outside of nipple, F 14 1378
Inside of near wall to outside of nipple, N <u>178</u> 1.578
Nearest downstream disturbance, A <u>27//2</u>
Nearest upstream disturbance, B <u>691/</u>
Circular: Inside Diameter, F-N 123/8 1214
Rectangular: Width" Depth"
Rectangular Equiv. Diameter: (2*W*D)/(W+D)"
Number of Ports: 2
Duct characteristics:
Construction: Steel PVC Fiberglas Other
Shape: Circular Rectangular Elliptical
Orientation: (vertical) Horizontal Diagonal (~ angle:º)
Flow straighteners: Yes No
Flow straighteners: Yes No
Flow straighteners: Yes No
Flow straighteners: Yes No Stack Extension: Yes No Cyclonic Flow Expected: Yes No



Shared files/Field/Data Sheets/Method 1/Method 1_PDX-v1.pdf

## **Calibration Information**

Meter Box Calibration Critical Orifices Standard Meter Pitots Thermocouples and Indicators Peristaltic Pump Calibration Barometer



## Biannual Meterbox Calibration

Method Location	EPA M-5 #7 Horizon Sho						Date	1/11/2016								
Meter Box ID	2						Pb=		(in Hg)				Old	New	Change	
Meter ID	2713325						Ta=	51	(°F)			0.97 <y<1.03< th=""><th>11/5/15</th><th>1/11/16</th><th>(+/-)</th><th></th></y<1.03<>	11/5/15	1/11/16	(+/-)	
HEID	000316						Tamb	510,67	(°R)			Y=	1.02761	0,99949	-2.8%	PASS
calibrated by	PT				Leak checks							dH@=	2.13525	1.97675	-8.0%	
Orifice Set	ND				Negative Positive		in/min @ in/min @		inches H ₂ inches H2							
		0.00	77	77.1			Field	Meter			Time				[	
	VAC	Critical	К	đН	Meter	Net	T _{đi}	$T_{do}$	T.	$T_m$	t					
	(in Hg)	Orifice ID		(inH ₂ O)	(ft ³ )	(ft ³ )	(°F)	(ন°)	(°R)	(°R)	(min)	Y	dH@	Y 0.020	dH@ 0.20	Allow, Toler
Initial	23	ND48	0.3353	0.68		6.0210				511.2	14.00	0,99809	1.98274		0.01	
Final					288,237		53.0	51.0						pass		
Initial	21	ND55	0.44909	1.2	288,237	5.1750			511.2	512.4	9.00	1.00105	1.95551	0,002	0.02	
Final	- 10		0.50500		293.412		55.0	52.0						pass		
Initial Final	- 19	ND63	0.58688	2.1	293.412 298.685	5.2730	55.0 58.0	<u>52.0</u> 52.0		513.9	7.00	0.99931	1,99200	0.000		
	- <b>I</b>								I			0.00040	1.97675	pass	pass	1
											STDEV	0.0012		<u>I</u>		
			Ambient		1		Heated		1		STDEV/AVG	0.12%				
Meterbox		Standard, °F	Measured, °F	Difference %	Amb,	Standard, °F	Measured, °F	Difference %	Heated							
ΥY	In	58.3	58.1	0.04%	pass	199.0	199.0	0.00%	pass							
1/8/16	Out	57.7	56.5	0.23%	pass	200.0	200.0	0.00%	pass							
FLUKE	605															
Calibrated by	PT															
Thermocouple			Ambient		1		200 +/-		ı r		400 +/-		1			
Indicator		Standard, °F		Difference %		Standard, °F		Difference %		Standard, °F	Measured, °F	Difference %				
YY	Stack	50		0.39%		200			pass	400	399		Dass	1		
1/8/16	Probe	50		0.39%	pass	200			pass	400	398		Dass	1		
	Oven	50		0,39%		200	199		pass	400	398		Dass			
1	Impinger	50		0,39%	pass	200	199		pass	400	398		pass	1		
1	Aux	50		0.39%	pass	200			pass	400	399		pass	1		
	Meter In	50		0.00%	pass	200			pass	400	398		pass			
	Meter Out	. 50	49	0.20%	pass	200	198	0,30%	pass	400	398	0.23%	pass			
Signal Tester	542													-		

Signal Tester Calibrated by

542 PT

80

## Biannual Meterbox Calibration

Horizon Sha 29 7587707 sh					]	Pb= Гa≕ Tamb	58 517.67	°F) (°R)		[	0.97 <y<1.03 Y= dH(@=</y<1.03 	Old	New 2/26/16 0.98764 1.73900	Change (+/-) 100.0%	PASS
ND															
VAC (in Hg)	Critical Orifice ID	ĸ	dH (inH2O)	Meter (ft ³ )	Net (ft ³ )	Field T _{di} (°F)	Meter T _{do} (°F)	To (°R)	T _n (°R)	Time t (min)	Y	ан@	Y 0 020	dH@ 0 20	Allow. Tolerance
23.5	ND48	0.33530	0.61	506.824	6.1400	59,0	59,0	519.7	519.9	14.00	0.98891	1.73749		0.00	inow. roleiance
	20055	0.44000			5 00 50			200.2		10.00			pass	pass	
- 22.5	ND55	0,44909	1.1		5.8850			520.7	520.9	10,00	0.98779	1.73675			
20.5	ND63	0.58688	1.9		15.4200			522.2	522.4	20.00	0.98622	1.74274			
				534,269		65,0	64.0						pass	pass	
		Ambient	1	Г		Heated	1	-		STDEV STDEV/AVG	0.98764 0.0011 0.11%	1.73900			
	Horizon Sho 29 7587707 sh ND VAC (in Hg)	7587707 sh ND VAC Critical (in Hg) Orifice ID 23.5 ND48 22.5 ND55 20.5 ND63	Horizon Shop 29 7587707 sh ND VAC Critical K (in Hg) Orifice ID 23.5 ND48 0.33530 22.5 ND55 0.44909 20.5 ND63 0.58688 Ambient	Horizon Shop 29 7587707 sh ND VAC Critical K dH (in Hg) Orifice ID (in H ₂ O) 23.5 ND48 0.33530 0.61 22.5 ND55 0.44909 1.1 20.5 ND63 0.58688 1.9 Алтbient	VAC         Critical         K         dH         Meter (in Hg)           23.5         ND48         0.33530         0.61         506.824           23.5         ND48         0.33530         0.61         506.824           22.5         ND55         0.44909         1.1         512.964           20.5         ND63         0.58688         1.9         518.849           20.5         ND63         0.58688         1.9         518.849           Ambient         Ambient         Ambient         Ambient         Ambient	VAC         Critical         K         dH         Meter         Net           (in Hg)         Orifice ID         K         dH         Meter         (ft ² )           23.5         ND48         0.33530         0.61         506,824         6.1400           22.5         ND55         0.44909         1.1         512,964         5.8850           20.5         ND63         0.58688         1.9         518,849         15.4200           Ambient         Ambient         534,269         534,269         15.4200	Horizon Shop         Date           29         Pb=           7587707         Ta=           sh         Leak checks           ND         Negative         0 in/min @           VAC         Critical         K         dH         Meter         Net           (in Hg)         Orifice ID         K         dH         Meter         (ft ² )         (°ft ² )           23.5         ND48         0.33530         0.61         506.824         6.1400         59.0           22.5         ND55         0.44909         1.1         512.964         58.850         62.0           20.5         ND63         0.58688         1.9         518.849         61.0           20.5         ND63         0.58688         1.9         518.849         15.4200         65.0           Ambient         Heated         Heated         Heated         Heated	Horizon Shop         Date         2/26/2016           29         Pb=         30.02           7587707         Ta=         58           sh         Leak checks         Tamb         517.67           ND         Negative         0 in/min @         27.5 in/min @         27.5 in/min @           VAC         Critical         K         dH         Meter         Net         Tain         Tain         6 in/min @         <	Horizon Shop     Date $2/26/2016$ 29     Pb= $30.02$ (in Hg)       7587707     Ta=     58 (°F)       sh     Leak checks     Tamb $517.67$ (°R)       ND     Negative     0 in/min @     27.5 inches Hg       Positive     0 in/min @     6 inches H ₂ O       VAC     Critical     K     dH     Meter       (in Hg)     Orifice ID     (inH ₂ O)     (ft ³ )     (ft ⁷ )     (°F)       23.5     ND48     0.33530     0.61     506.824     6.1400     59.0     59.0       22.5     ND55     0.44909     1.1     512.964     62.0     61.0       20.5     ND63     0.58688     1.9     518.849     61.0     61.0       20.5     ND63     0.58688     1.9     518.849     65.0     64.0	Horizon Shop     Date $2/26/2016$ 29     Pb= $30.02$ (n Hg)       7587707     Ta=     58 (°F)       sh     Leak checks     Tamb       ND     Negative     0 in/min @       27.5 inches Hg     Positive     0 in/min @       VAC     Critical     K     dH       (in Hg)     Orfice ID     K     dH       (in Hg)     Orfice ID     506.824       23.5     ND48     0.33530       0.61     506.824     6.1400       512.964     62.0     61.0       22.5     ND55     0.44909       1.1     512.964     520.0       518.849     61.0     61.0       20.5     ND63     0.58688       1.9     518.849     61.0       518.849     61.0     61.0       534.269     65.0     64.0	Horizon Shop       Date $2/26/2016$ 29       Pb= $30.02$ (in Hg)         7587707       Ta=       58 (°F)         Tamb $517.67$ (°R)         Shop         Nogative       0 in/min @         Positive       0 in/min @       27.5 inches Hg         VAC       Critical       K       dH       Meter       Net       Tai       Tae       Ta       Time       T         VAC       Critical       K       dH       Meter       Net       Tai       Tae       Tae <td>Horizon Shop       Date       2/26/2016         29       Pb=       $30.02$ (n Hg)         7587707       Ta=       58 (°F)       $0.97 \cdot Y &lt; 1.03$         sh       Leak checks       Tamb       $517.67$ (°R)       Y=         sh       Leak checks       Negative       0 in/min @       27.5 inches Hg         ND       Negative       0 in/min @       field       Meter       Ta       Ta</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Horizon Shop       Date       2/26/2016         29       Pb= $30.02$ (n Hg)         7587707       Ta=       58 (°F) $0.97 \cdot Y < 1.03$ sh       Leak checks       Tamb $517.67$ (°R)       Y=         sh       Leak checks       Negative       0 in/min @       27.5 inches Hg         ND       Negative       0 in/min @       field       Meter       Ta       Ta	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

			Ambient						
Meterbox		Standard, °F	Measured, °F	Difference %	Amb.	Standard, ^o F	Measured, ^D F	Difference %	Heated
29	In	59,0	60,0	-0,19%	pass	197.0	197,0	0.00%	pass
2/26/16	Out	59,0	60,0	-0.19%	pass	197.0	197.0	0.00%	pass
Fluke	480								
Calibrated by	sh								

---

Calibrated	by

Thermocouple			Ambient				200 +/-				400 +/		1
Indicator	Channel	Standard, °F	Measured, °F	Difference %		Standard, °F	Measured, °F	Difference %		Standard, °F	Measured, °F	Difference %	l
29	Stack	50	46	0.78%	pass	250	246	0.56%	pass	450	446	0.44%	pass
26-Feb-16	Probe	50	46	0,78%	pass	250	246	0,56%	pass	450	445	0.55%	pass
	Oven	50	46	0.78%	pass	250	244	0.85%	pass	450	444	0.66%	pass
	Impinger	50	48	0.39%	pass	250	246	0.56%	pass	450	447	0.33%	pass
	Aux	50	48	0.39%	pass	250	247	0.42%	pass	450	447	0.33%	pass
1	Meter	50	50	0.00%	pass	250	249	0.14%	pass	450	449	0.11%	pass
	Meter	50	. 50	0.00%	pass	250	250	0.00%	pass	450	450	0.00%	pass

## Post Test Meterbox Calibration

Method	EPA M-5 #7.2						
Location	Horizon Shop	Date	4/30/2016				
Meter Box ID	2	Pb=	30.20 (in Hg)		Biannual	Post-Test	Change
Meter ID	2713325	Ta=	61.5 (oF)		1/11/2016	4/30/16	(+/-)
calibrated by	SH	Tamb	521.2 (oR)	Y=	0.99949	1.01415	1.4%
				dH@≕	1.97675	1.98647	0.5%

Field Meter Time -VAC Critical К dH Meter Net Tdi Tdo Τо Τm t Y (in Hg) Orifice ID (inH2O) (ft3) (ft3) (0F) (oF) (oR) (oR) Y dH@ dH@ (min) YD 0.020 0.20 Allow. Tolerance Initial 21.5 40 0.23930 0.3 876.626 5.205 59 59 519.5 520.0 17.0 1.0084 2.0029 0.006 0.02 Final 881.831 62 60 pass pass Initial 21.5 40 0.23930 0.3 881.831 5.172 60 520.5 521.8 17.0 1.0182 2.0246 62 0.004 0.04 Final 887.003 64 61 pass pass Initial 21.5 40 0.23930 6.125 524.0 0,3 887,003 64 61 522.5 20.0 1.0159 1.9319 0.002 0.05 Final 893.128 67 64 pass pass 1.01415 1.9865

.

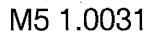
pass

## Post Test Meterbox Calibration

Method	EPA M-5 #7.2							
Location	Horizon Shop	Date	4/30/2016					
Meter Box ID	29	Pb=	30.2 (in Hg)	· [	Biannual	Post-Test	Change	1
Meter ID	7587707	Ta≈	61.5 (oF)		2/26/2016	4/30/16	(+/-)	
calibrated by	SH	Tamb	521,2 (oR)	. Y=	0,98764	0.99286	0.5%	pass
				dH@≕	1.73900	1.74335	0.2%	•

	VAC (in Hg)	Critical Orifice ID YD	ĸ	dH (inH2O)	Meter (ft3)	Net (ft3)	Field Tdi (oF)	Meter Tdo (oF)	To (oR)	Tm (oR)	Time t (min)	Y	dH@	Y 0.020	dH@ 0,20	Allow. Tolerance
Initial	25	40	0.23609	0.3	591.039	5.1960	59	59	519.0	519.8	17.0	0.9962	1,7751	0.003	0.03	
Final					596.235		62	59						pass	pass	1
initial	25	40	0.23609	0.3	596.235	5.2240	62	59	521.0	522,0	17.0	0.9951	1.7494	0.002	0.01	1
Final					601.459		64	63						pass	pass	1
Initial	25	40	0.23609	0.3	601.459	6.5230	64	63	523.0	523.5	21.0	0.9873	1.7056	0.006	0.04	1
Final		<u> </u>			607,982		64	63						pass	pass	
												0.9929	1.7433			-

Critical Orifice Calibrations


Client	HORIZO	N									12/3/15 I	Date
Set ID	SET "IZ	" Avogadro	0								in house J	ob
DGM (Y)=	1,00310	)									YY C	Calibrated
DGM ID#	2299046	5									mew (	DA/OC
Dry Gas Meter			Orifice ID #	40	Orifice ID #	48	Orifice ID #	55	Orifice ID #	63	Orifice ID #	73
K' Critical Orifice Coefficient				0.23930	Γ	0.34956	Г	0.45656	ľ	0.58764		0.80451
	Symbol	Units	Run 1	Run 2								
Initial volume	Vi	ft²	644.002	650,177	657.643	663.064	668.513	674.495	680,673	688.025	694,226	704.545
Final Volume	Vr	ft²	650,177	657.429	663.064	668.513	674.495	680.673	688.025	694.226	704.545	722.965
Difference	Vm	ft²	6.175	7.252	5.421	5.449	5.982	6.178	7.352	6.201	10,319	18,420
Temperatures												
Ambient	Та	°F	56.0	57.0	58.0	58.5	59.0	59.0	60.0	60.0	60.0	60.0
Absolute ambient	Ta	°R	515.67	516.67	517.67	518.17	518,67	518.67	519.67	519.67	519,67	519.67
Initial Inlet	$T_i$	°F	56.6	64.4	58.3	68.1	73.5	80.9	82.9	88.9	89.3	95.1
Outlet	Tr	°F	56.2	57.2	58.3	58.6	59.2	60.1	61	62.1	62.8	64.5
Final Inlet	$T_i$	°F	64.4	69.1	68.1	73.5	80.4	82.9	88.9	89.3	95.1	94
Outlet	Τ _f	°F	57.2	58.3	58.6	59.2	60.1	61	62.1	62.8	64.5	65.5
Avg. Temp	Ţ,	°R	518,27	521.92	520,495	524.52	527.97	530.895	533.395	535.445	537,595	539.445
Time		min	20	23	12	12	10	10	9	8	9	· 17
		sec	0	23	0	0	0	20	30	0	44	16
			20.00	23,38	12.00	12.00	10.00	10.33	9.50	8.00	9.73	17.27
SAMPLE RATE		ACFM	0,3088	0.3101	0.4517	0.4541	0.5982	0.5979	0.7739	0,7751	1.0602	1.0668
Orifice man. rdg	dH@	in H ₂ O	0.29	0.29	0.68	0,68	1.30	1.30	2.20	2.20	4.10	4.10
Barometric. Pressure	Pbar	inHg	29.58	29.55	29.55	29.55	29.52	29.52	29.52	29.52	29.52	29.52
Pump vacuum		inHg	20.6	20.6	19.0	19.0	17.6	17.6	15.8	15.8	12.8	12,8
K' factor			0.2395	0.2391	0.3499	0,3492	0.4579	0.4552	0.5883	0,5870	0,8034	0,8056
K' factor Average				0.2393		0,3496		0,4566		0.5876		0.8045
% Error (+/- 0.5)		%	PASS	0,079%	PASS	0.103%	PASS	0.304%	PASS	0.112%	PASS	0.140%

## **Critical Orifice Calibrations**

Client	HORIZ										12/2/15 I	Date
Set ID	"NR" S	shop #2									in house J	ob
DGM (Y)=	1.0031	10	Fluke ID 455								YY (	Calibrated
DGM ID#	229904	16	_Std Manometer 5	37							mew (	)A/OC
Dry Gas Meter			Orifice ID #	40	Orifice ID #	48	Orifice ID #	55	Orifice ID #	63	Orifice ID #	73
K' Critical Orifice Coefficient				0.23609		0.34106		0.44771	r	0.57050	F	0.77954
	Symbo	l Units	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Initial volume	Vi	ft²	580.170	587.015	595,181	600.520	605.860	612.315	618,785	625.170	631.564	637,752
Final Volume	$V_{f}$	ft²	587.015	595.181	600.520	605,860	612,315	618.785	625,170	631,564	637,752	643.920
Difference	V _m	ft²	6.845	8.166	5.339	5,340	6,455	6.470	6.385	6.394	6.188	6,168
Temperatures								********				
Ambient	Τ _α	°F	59.5	58.0	58.0	58,5	58.5	59,0	59.0	59.5	59,5	59,5
Absolute ambient	$T_a$	°R	519.17	517.67	517.67	518,17	518.17	518.67	518,67	519,17	519,17	519.17
Initial Inlet	T,	°F	73.1	67.6	68.6	75.2	76,2	81.9	82.5	87.2	88.0	93.7
Outlet	Тŗ	٩F	64.3	60,1	58.5	59.0	59.5	60,3	60.8	61.6	62.3	63.1
Final Inlet	T,	°F	67.6	68,6	75.2	76.2	81.9	82.5	87.2	88.0	93.7	94.7
Outlet	$T_{f}$	°F	60.1	58.5	59.0	59.5	60,3	60.8	61.6	62,3	63.1	64.0
Avg. Temp	Tm	°R	525,945	523.37	524.995	527,145	529.145	531.045	532,695	534,445	536,445	538,545
		·										
Time		min	22	26	12	12	11	11	8	8	6	6
		sec	10	42	0	0	0	0	30	30	0	0
			22,17	26.70	12.00	12.00	11.00	11.00	8.50	8.50	6.00	6.00
SAMPLE RATE		ACFM	0.3088	0.3058	0.4449	0.4450	0.5868	0.5882	0,7512	0.7522	1.0313	1.0280
Orifice man. rdg	dH@	in H ₂ O	0.28	0.28	0.66	0.66	1.20	1.20	2.00	2.00	3.90	3,90
Barometric. Pressure	Pbar	inHg	30.08	30.08	30.05	30.02	30,02	29.99	30,02	30.02	29,99	29.99
Pump vacuum		inHg	21.2	21,2	19.6	19.6	18.0	18.0	16.2	16.2	13.0	13.0
K' factor			0.2368	0.2354	0.3416	0.3405	0.4479	0.4475	0,5709	0.5701	0.7823	0,7768
K' factor Average				0.2361		0.3411		0.4477		0.5705		0.7795
% Error (+/- 0.5)		%	PASS	0.308%	PASS	0.171%	PASS	0.039%	PASS	0,069%	PASS	0.357%

Z:\Shared files\Company\ReportCALS\Critical Orifice\Shop Orifices\2015\SET_NR_SHOP(2)_120215.xls

## Secondary Standard



DATE:	7/22/2013

## Operator: Joe Ward

Meter 1	No: 229	9046			Meter	Box ∆⊦	1@	0.0000	•	Meter	Box Y	ď	1.0031		Barom	etric Pres	sure:	29.71
					rd Met lume (			eter Box ( Dume (V,		-	id. Met peratur			leter Boz perature				
Q	P	H	Yds	Initial	Final	Vf	Initial	Final	Vf	Inlet	Outlet	Avg.	Inlet	Outlet	Avg.	Time	Yd	Run #
1.21	-1.60	0.00	1.0000	0.0	5.005	5.005	192.235	197_290	5.055	72.0	72.0	72.0	76.0	76.0	76.0	4.08	1.0015	1
1,21	-1.60	0.00	1.0000	0,0	6,025	6.025	197.290	203.386	6.096	72.0	72.0	72.0	76.0	76.0	76.0	4.91	0.9997	1
1.21	-1.60	0.00	1.0000	0.0	5.005	5.005	203,386	208.775	5.059	72.0	72,0	72.0	76.0	76.0	76.0	4.09	1,0007	1
0.40	-0.60	0.00	1.0000	0.0	9.145	9.145	255.492	264.670	9.178	72.0	72.0	72.0	76.0	76.0	76.0	22.49	1.0054	2
0.40	-0.60	0.00	1.0000	0.0	<del>5</del> ,000	5.000	264.670	269,691	5,021	72.0	72.0	72.0	76.0	76.0	76.0	12.29	1.0048	2
0.40	-0:60	0.00	1.0000	0.0	6.000	6.000	269,691	275,726	6.035	72,0	72.0	72.0	76.0	7 <del>6</del> .0	76.0	14.73	1.0032	2
0.62	-0.80	0.00	1.0000	0.0	5.000	5.000	279.510	284,532	5.022	72.0	72.0	72.0	77.0	77.0	77.0	8.00	1.0070	3
0.62	-0.80	0.00	1.0000	0.0	5.005	5.005	284.532	289.565	5.033	72,0.	72.0	72.0	77.0	77.0	77.0	8.01	1.0058	3
0.62	-0.80	0.00	1.0000	0.0	5.015	5.015	289.565	294.610	5.045	72.0	72.0	72.0	77.0	77.0	77.0	8.01	1,0054	3
0,83	~1.40	0.00	1.0000	0.0	6.005	6.005	307,368	313,408	6.040	72.0	72.0	72.0	76.0	76.0	76.0	7.17	1.0052	. 4
. 0.83	-1.40	0.00	1.0000	0.0	9.025	9.025	313,408	322,502	9.094	72.0	72.0	72.0	76.0	76.0	76.0	10.75	1.0034	4
0.83	-1.40	0.00	1.0000	0.0	5.000	5.000	322.502	327.531	5.029	72.0	72.0	72.0	76.0	76.0	76.0	5.97	1.0052	4
1.00	-1.50	0.00	1.0000	0.0	9.300	9,300	331.290	340.710	9.420	72.0	72.0	72.0	76.0	76.0	76.0	9.15	0,9984	5
1.00	-1.50	0.00	1.0000	0,0	5.005	5.005	340.710	345.770	5.060	72,0	72,0	72.0	76.0	76,0	76.0	4.92	1.0003	5
1.00	-1.50	0.00	1.0000	0.0	5.005	5.005	345.770	350.831	5.061	72.0	72.0	72.0	76.0	76.0	76.0	4.95	1.0001	5
			<u>.</u>			•	·	1			<b>.</b>	I	<b>.</b>		AVER	AGE	1.0031	

HORIZON ENGINEERING 16-5702

Millennium Instruments Inc. 2402 Springridge Drive unit A Spring Grove IL. 60081 PHONE#(815)675-3225 FAX#(815)675-6965

E-mail: millennium@millinst.com www.millinst.com

Operator Signature

## **Biannual Probe Calibration**

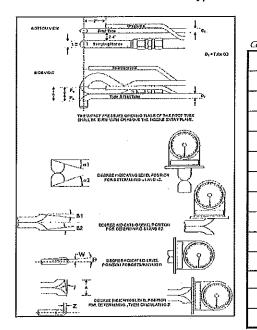
Horizon Engineering, LLC

Probe ID:2-1Date:08/26/15Operator:JLProcedure:Method 2 Section 10.0

Std. Manometer ID	610/611/584
Std. P-Types Pitot	160-18

	DpP	DpS	Ср	dS	Avg Cp	S		
	(P-Type) (	(S-Type)				<0.01		
Run #								
1	0.195	0.262	0.8541	0.001	0.8528	0.002	Cp Limits	Fail
2	0.492	0.660	0.8548	0.002			MAX/MIN	Pass
3	0.855	1.150	0.8536	0.001			S Limits	Pass
4	1.413	1.922	0.8488	0.004				

Method 2 Passing Criteria 10.14.3/12.4




Client: Project No

2-1

Type S Pitot Tube Inspection Form

PITOT TUBE/PROBE #



omplete this section fo	or all pitot tu	bes:		
Parameter	Value	Allowable Range	Check	
Assembly Level?	X	Yes	V	
Ports Damaged?	N	No	V	~
a1	1	-10° < α1 < +10°	V	h
α2	0	-10° < α2 < +10°	V	
β1	0	-5° < β1 < +5°		
β2,	1	-5° < β2 < +5°	V	
Ŷ	$\square$	NA	NA	
Θ	$\mathcal{O}$	NA	NA	
Z ₁ = A tan γ	$ \mathcal{O} $	Z ₁ ≤ ,125*		
W₁ ⊨ A tan o	$\odot$	W ₁ ≤ ,031"	4	
DT	.375	,188" to .375"	11	_
A/(2D _T )	25	$1.05 \le P_A/D_T \le 1.5$	K	
A	075	2.1D _T ≤ A ≤ 3D _T		
· · · · · · · · · · · · · · · · · · ·		2,1 D _T = 3D _T =		

D, Type 57 10, 1)7055 6 Sample Probe Type S Pilot Tube ( ŧD. Y ≥ 7.62 cm (3 in.) Samp

Complete this section	on for pitot tubes attaci	hed to Method 5 probes:	
W2	M/M-	W ₂ > 3"	V
¥¥2	2.25	W₂ ≻ 2*	V
Z ₂	NA	Z ₂ > 0.75"	1
Y	3	¥≥3"	1

Certification

I certify that pitot tube/probe number  $\frac{2-1}{2}$  meets or exceeds all specifications, criteria and/or applicable design features. See 40 CFR PL 60, App, A, EPA Method 2.

Certified by:

Personnel (Signature/Date)

Shared files/Field/Data Sheets/Method 2/Method 2_pitot_alignment_M_v1

HORIZON ENGINEERING 16-5702

## **Biannual Probe Calibration**

Horizon Engineering, LLC

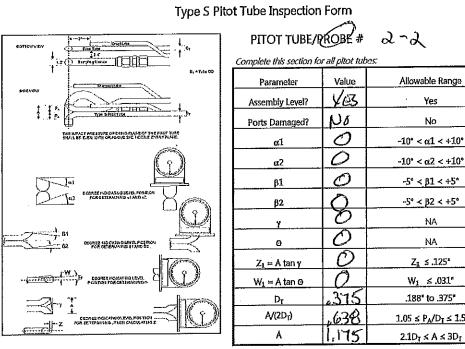
Std. Manometer ID

Std. P-Types Pitot

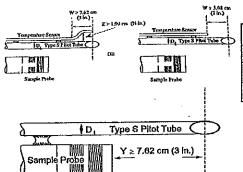
610/611/584

160-18

Probe ID:2-2Date:02/02/16Operator:SHProcedure:Method 2 Section 10.0


	DpP (P-Type) (	DpS S-Type)	Ср	dS	Avg Cp	S <0.01		
Run #	(= -71-7) (	7 - 7				0101		
1	0.200	0.280	0.8367	0.000	0.8364	0.005	Cp Limits	Pass
2	0.480	0.670	0.8380	0.002			MAX/MIN	Pass
3	0,900	1.290	0.8269	0.009			S Limits	Pass
4	1.490	2.050	0.8440	0.008				

Method 2 Passing Criteria 10.14.3/12.4


ø



Client:	Bullseye
Project No:	570d



-5° < β1 < +5° V -5° < β2 < +5° NA NA NA NA  $Z_1 \leq .125^*$ W₁ ≤ .031" .188" to .375"  $1.05 \leq P_A/D_T \leq 1.5$  $2.1D_7 \leq A \leq 3D_7$ 2,1 D_T ≓ 3D_T



Complete this section	in for pitot tubes attac	thed to Method 5 probes:	
w		W ₂ > 3*	****
W ₂	2	W ₂ > 2*	V
Z ₂	-	Z ₂ > 0.75*	
Y	3"	Y≥ 3"	$\mathcal{V}$

· Certification

I certify that pitot tube/probe number Z See 40 CFR PL 60, App. A, EPA Method 2, meets or exceeds all specifications, criteria and/or applicable design features.

Certified by:

5B/16 Personnel (Signature/Date)

Shared files\Field\Data Sheets\Method 2\Method 2_pitot_alignment_M_v1

Check

 $\mathcal{V}$ 


V

HORIZON ENGINEERING 16-5702

## Sample Box Thermocouple Calibrations

Month:	4/4/2016		Tester/Standard:	PB,BW	Location	; Horizon Shop/A	Auburn shop/Bel	lingham	Fluke 526
			Ambient				Ice		Fluke 377
	Date	Standard, °F	Measured, °F	Difference %		Standard, °F	Measured, °F	Difference %	
Sample Box - impinger out									
I-01	4/7/2016	64,3	68.3	-0.76%	pass	34.7	34.3	0.08%	pass
I-02									
I-03	4/7/2016	66.3	66,0	0.06%	pass	33.1	32.7	0.08%	pass
I-04	1/27/2016	69.0	68.9	0.02%	pass	31.7	31.9	-0.04%	pass
I-05	10/7/2015	68.7	67.3	0.26%	pass	36.9	35.2	0.34%	pass
I-06	1/27/2016	57.7	55.7	0.39%	pass	31.7	32.6	-0,18%	pass
I-07	10/7/2015		67.3	0,26%	pass	37.1	37.6	-0.10%	pass
1-08	4/7/2016	63,8	65.1	-0.25%	pass	35,0	34.2	0.16%	pass
1-09	10/7/2015	68,6	66.6	0.38%	pass	37.2	36,8	0.08%	pass
I-10	1/27/2016	69,1	67.4	0.32%	pass	31.7	32.0	-0.06%	pass
I-11	1/27/2016	57.7	55.7	0.39%	pass	31.7	33,3	-0.33%	pass
I-12	4/7/2016	66,3	67.9	-0.30%	pass	33,2	33.7	-0.10%	pass
I-13	4/7/2016	64.4	63.5	0.17%	pass	33,0	32,9	0.02%	pass
I-14	4/7/2016	64.0	64.3	-0.06%	pass	33,5	32.7	0.16%	pass
I-15									
I-16	2/26/2016	64.0	65.0	-0.19%	pass	32.0	33.0	-0.20%	pass
I-17	10/7/2015	68.5	67.3	0.23%	pass	37.1	37,1	0.00%	pass
I-18			ļ			ļ			
I-19									
I-20	4/6/2016	66.8	66.5	0.06%	pass	33.1	33.1	0.00%	pass
I-21									
1-22	3/14/2016	88,8	89.0	-0.04%	pass	31.9	32.0	-0.02%	pass
I-23	4/7/2016	66.1	64.8	0.25%	pass	33.1	33,8	-0.14%	pass
I-24	10/7/2015	68.6	67.1	0.28%	pass	36,5	36,4	0.02%	pass
I-25	2/26/2016	64.0	64.0	0.00%	pass	32,0	34.0	-0.41%	pass
I-26	4/7/2016	65.6	66.5	-0.17%	pass	34.7	34.4	0.06%	pass
I-27	4/7/2016	66.1	66,4	-0.06%	pass	34.3	33.3	0.20%	pass
1-28	4/7/2016	64.3	63,1	0.23%	pass	33.5	33.9	-0.08%	pass
I-29	1/27/2016	67.5	65.5	0.38%	pass	31.7	32.1	-0.08%	pass
I-30	4/6/2016	66.8	65,6	0.23%	pass	33.2	33.7	-0.10%	pass
I-31	4/7/2016	68.0	69.1	-0.21%	pass	35.1	33,3	0,36%	pass
I-32									
I-33									
J-34	1/7/0014	(10	(2.6						
I-35	4/7/2016	64.0	63.6	0.08%	pass	33.1	32,1	0.20%	pass
I-36	10/7/2015	69.8	68.1	0,32%	pass				
I-37	4/7/2016	66.1	66.9	-0.15%	pass	33,8	33.4	0.08%	pass
I-38 I-39	4/7/2016 4/7/2016	64.2	63.9	0.06%	pass	33,1	33.1	0.00%	pass
1-39	4/7/2016	66.0 64.3	<u>66.2</u> 62.7	-0.04%	pass	34,7	34.0	0.14%	pass
1-40	4/7/2016	64.0	62.7		pass	33,1	32.0	0.22%	pass
1-41	4/ 1/2010	04.0	02.2	0.34%	pass	33,0	33.3	-0.06%	pass
GS-02	4/6/2016	66.5	65.1	0.27%	<b>n</b> 222	267	- 26 /	0.00%/	
GS-02 GS-03	4/6/2016	66.4	64.7	0.27%	pass	36.6 35.7	35.6	0,20%	pass
GS-202-01	4/6/2016	64.0	64.7	0.32%	pass		33.4	0.46%	pass
GS-202-01 GS-202-02	4/7/2016	65.6	66,9	-0,25%	pass	33.1 32.7	32.5	0.12%	pass
GA-05	11/3/2015	50,5	48.5	0.39%	-	32.7	33.5	-0.16%	pass
OA-00	11/3/2013	50,5	C.OF	0.3370	pass	33.0	33,3	-0.1076	pass
GN-2	1/27/2016	57.7	57.2	0.10%	pass	31.8	31.9	-0.02%	****
GN-2 GN-7	4/6/2016	66,5	65.0	0.29%	pass	33.8	33.1	-0.02%	pass
4721	11/3/2015	54,2	53.0	0.23%	pass	35.1	34.8	0.06%	pass
SEA-GN-1	4/7/2015	64.0	62.1	0.36%	pass	33.0	34.8	-0.10%	pass
51/11/01/11		50.5	48.5	0.39%	pass	33.0	33.5	-0.10%	pass
ŀ		50.5	48.5	0.39%	pass	33.0	33.5	-0.10%	pass
ł		50.5	48.5	0,39%	pass	33.0	33.5	-0.10%	pass
-		50.5	48.5	0.39%		33.0			pass
		50.5	40,3	0,3970	pass	33.0	33,5	-0.10%	pass

.



92

Certificate No. 1750.01 Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. Instrument Identification:

Model: 932	7K16	S/N: 1407	754307	Manufa	cturer: Conf	rol Compa	any	JI			
Standards	/Equipment		· ·								
	Desc	ription		Seri	Serial Number Due Date				uble Refere	nce	
Ter	nperature Calib	ration Bath TC	-179		A45240						
	Thermist	or Module		A17118	2/24/	15	1000	351744			
	Temperat	ture Probe		128	3/12/	15	15-CJ	73 <b>J</b> -4-1			
Ter	nperature Calib Digital The	ration Bath TC ermometer	-309		B3A444 140073820 1/28/15			4000-5680560			
Certificate	Information	1:									
Technician: Test Conditi		Procedure: 0°C 43.0		021 mBar	Cal Date: 10	/31/14		Due Date:	10/31/16		
Calibration	n Data: (Nev	v Instrumen	it)								
Unit(s)	Nominal	As Found	in Tol	Nominal	As Left	In Tol	Min	Мах	±U	TUR	
°C		N,A.		0.000	-0.3	Y	-1.0	1.0	0.10	>4:1	
°C		N.A.		100.000	99.7	Y	99,0	101.0	0,059	>4:1	

#### This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty availation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty using a coverage factor k=2 to approximate a 95% confidence level, in toterance conditions are based on test results failing within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Data=MM/DD/YY

Nicol Rodriguez, Quality Manager

REDITED

Calibration

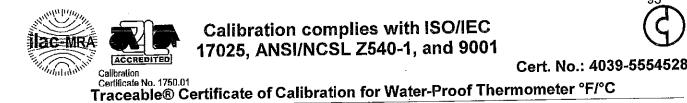
fai Asa Aaron Judice, Technical Manage

## **Maintaining Accuracy:**

In our opinion once calibrated your Water-Proof Thermometer *F/C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer *F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

## **Recalibration:**

For factory calibration and re-certification tracaable to National Institute of Standards and Technology contact Control Company.


CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company Is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company Is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Cartificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traccable® is a registered trademark of Control Company

© 2009 Control Company



Cust ID:Horizon Engineering, 13585 NE Whitaker Way, Attn. Joe Heffernan III, Portland, OR 97230 U.S.A. (RMA:982686) Instrument Identification:

## ID: CS Model: 90205-22 S/N: 111896552 Manufacturer:Control Company

Standards/Equip	oment:				· · - •
	<b>Description</b>		Serial Num		NIST Traceable Reference
T T	re Calibration E hermistor Modu emperature Pro	lle be	A45240 A17118 128	2/13/14 2/20/14	1000332071 6-B48Z9-30-1
Ť	re Calibration E hermistor Modu emperature Pro	ile	A73332 A27129 5202		1000346002 15-B15PW-1-1
<b>Certificate Infor</b>	mation:				
Technician: 68 Test Conditions:	Proc 24,5°C	edure: CAL-0 44.0 %RH	)3 1007 mBar	Cal Date: 12/03/13	Cal Due: 12/03/15

## Calibration Data:

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	in Tol	Min	Max	±U	TUR
°C		N.A.		0,000	-0,5	Y	-1.0	1.0	0.100	>4:1
°C		N.A.		100.000	99.7	Y	99,0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated using the expanded measurement uncertainty in Uncertainty evaluation includes the instrument under test and is calculated using the expanded measurement. The results failing within specified timits with no reduction by the uncertainty of the measurement. The results contained to the instrument under test approximate a 9% confidence level, in tolerance conditions are based on test results failing within specified timits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Controt Company.

Nominei=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Nicol Rodriguez, Quelity Maneger

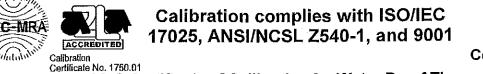
las Aaron Judice, Technical Manager

### Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer *F/*C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer *F/*Cs change little, if any at all, but can be affacted by aging, temperature, shock, and contamination.

## **Recalibration:**

For factory calibration and re-cartification traceable to National Institute of Standards and Technology contect Control Company.


CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accraditad by (A2LA) American Association (or Laboratory Accraditation, Cartificate No. 1750.01, Control Company is ISO 9001:2006 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2008-AQ-HOU-RVA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company



Cert. No.: 4039-7216692

Л

## Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Cust ID:Horizon Engineering, 13585 NE Whitaker Way, , Portland, OR 97230 U.S.A. (RMA:1000681) Instrument Identification:

Model: 902	205-22	S/N: 240	289961	Manufa	cturer: Con	trol Comp	any			
Standards	s/Equipment				4					
	Descr	iption ,		Serla	al Number	<u>Due D</u>	<u>ate</u>	NIST Tracea	ible Refere	nce
Те	mperature Calib	ration Bath TC	179	1	\45240					
	Thermisto	or Module		1	17118	3/03/			371058	
		ure Probe			3039	4/02/	16	15A0I	P2S-20-1	
Те	mperature Calib Digital The	ration Bath TC ermometer	-231		\79341 0070752	2/20/	16	4000-6	5561724	
Certificate	Information	1:								
Technician:	68	Procedure	CAL-03		Cal Date: 11	/16/15		Due Date:	11/16/16	
Test Condit	ions: 24.9	9°C 50.0	%RH 1	011 mBar						
Calibratio	n Data:									
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C	0.000	-0.2	Y	0.000	-0.2	Y	-1.0	1.0	0.10	>4:1
	100,000	100.0	Y	100.000	100.0	Y	99.0	101.0	0.059	>4:1
A Test Uncertaint test and is calcula to epproximate a	nent was calibra ly Ratio of at least 4:1 aled In accordance wi 95% confidence level to the Item calibrated	is maintained unles th the ISO "Guide to . In tolerance condil	s otherwise at the Expressio ions are base	ated and is calculat on of Uncertainty in i d on test results faili	ed using the expar Measurement" (GL ng within specified	ded measurem IM), The uncert Simits with no re	ent uncertainly. ainty represent aduction by the	Uncertainty evaluate an expanded uncert	ainty using a co	varaga tactor K=2

Nominal=Standerd's Reading; As Laft=Instrument's Reading; In Tot=In Toterance; Min/Max=Acceptance Range; ±U=Expended Measurement Uncerteinty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominel(Rounded) - Toterance; Max = As Left Nominel(Rounded) + Toterance; Date=MM/DD/YY

in Rodriguez ez, Quelity Manager

Aaron Judice, Technicel Manager

## **Maintaining Accuracy:**

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, tempereture, shock, and contamination.

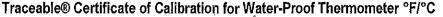
## **Recalibration:**

For factory celibration and re-certification traceable to National Institute of Stendards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Celibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company is ISO 9001:2008 Quelity Certified by (DNV) Del Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangament (MRA).

Page 1 of 1


Traceable® is a registered trademark of Control Company

© 2009 Control Company

HORIZON ENGINEERING 16-5702

Cert. No.: 4039-6313618

**N I** 



Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. Instrument Identification:

Model: 932	7K16	S/N: 1407	54311	Manufa	cturer: Cont	rol Comp	any	Un			
Standards/	Equipment										
	Descr	iption		Serial Number Due Date			ate	NIST Traceable Reference			
Tem	perature Calib	ration Bath TC	179		A45240						
	Thermisto	or Module		417118	2/24/	15	1000	351744			
	Temperat	ure Probe		128	3/12/	'15	15-CJ	73J-4-1			
Ten	perature Calib	ration Bath TC-	309	1	33A444						
	Digital The	ermometer		14	140073820 1/28/15			4000-8	5680560		
Certificate	Information	1									
Technician: Test Conditio		Procedure: °C 43.0		021 mBar	Cal Date: 10	/31/14		Due Date:	10/31/16		
Calibration	Data: (New	/ Instrumen	t)								
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR	
°C		N.A.		0,000	-0.5	Y	-1.0	1.0	0.10	>4:1	
°C		N.A.		100.000	99.7	Y	99.0	101.0	0.059	>4:1	

#### This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Raitio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Oulde to the Expression of Uncertainty In Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate e 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item callbrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading: As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Relio; Accurecy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Micel Rodriguez, Quality Manager

ACCREDITED

Calibration Certificate No. 1750.01

fili lace Aaron Judice, Technical Manager

## **Maintaining Accuracy:**

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exect way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change little, if eny at all, but can be affected by aging, temperature, shock, and contamination.

### **Recalibration:**

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company,

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1760.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Verites, Certificate No. CERT-01605-2008-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Traceable® is a registered trademark of Control Company

© 2009 Control Company



Cert. No.: 4039-6313622

RC

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. Instrument Identification:

Model: 932	27 <b>K1</b> 6	S/N: 1407	754314	Manufac	Manufacturer: Control Company							
Standards	s/Equipment	 .z										
	Desc	ription		Seria	l Number	<u>Due D</u> a	<u>ate</u>	NIST Tracea	ible Refere	nce		
Te	mperature Calib	ration Bath TC	-179	A45240								
	Thermist	or Module		A17118 2/24/15			15	•	351744			
	Temperat	ure Probe			128	3/12/	15	15-CJ	73J-4-1			
Te	mperature Calib	ration Bath TC	-309		33A444							
	Digital The	ərmometer	· · ·	14	0073820	1/28/	15	4000-5680560				
Certificate	e Informatio	1:										
Technician:	68	Procedure:	CAL-03	(	Cal Date: 10	/31/14		Due Date:	10/31/16			
Test Condit	ions: 23.0	)°C 43.0	%RH 1	021 mBar								
Calibratio	n Data: (Nev	v Instrumen	it)				······					
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR		
°C		N.A.		0.000	-0.5	Y	-1.0	1.0	0.10	>4:1		
		N.A.		100.000	99.7	Y	99.0	101.0	0.059	>4:1		

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty In Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate e 95% confidence level. In toterance conditions are based on test results feiling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written epproval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=/n Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncerteinty; TUR=Test Uncertainty Retlo; Accurecy=±{Mex-Min}/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=NM/DD/YY

Nicol Rodriguez, Quelity Manager

1di lan Aaron Judice, Technical Maneger

## Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be meinteined. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contermination.

### **Recalibration:**

For factory calibration and re-certification traceable to Netional Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025;2005 Calibration Leboratory Accreditad by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Traceable® is a registered trademark of Control Company

© 2009 Control Company

HORIZON ENGINEERING 16-5702





Cert. No.: 4039-6313605

97

## Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. Instrument Identification:

Model: 932	7K16	S/N: 1407	754303	Manufa	cturer: Cont	rol Compa	any	BS				
Standards/	Equipment	:										
	Descr	iption		Seri	Serial Number Due Date				ble Refere	ence		
Tem	perature Calib	ration Bath TC	-179		A45240							
	Thermiste	or Module			A17118	2/24/	'15	1000	351744			
	Temperat	ure Probe			128 3/12			3/12/15 15-CJ73J-4				
Tem	perature Calib	ration Bath TC	-309		B3A444							
	Digital The	ermometer		1-	140073820 1/28/15			4000-!	5680560			
Certificate	Information	1:		• •								
Technician:	68	Procedure	: CAL-03		Cal Date: 10	/31/14		Due Date: 10/31/16				
Test Condition	ons: 23.0	)°C 43.0	%RH 1	021 mBar								
Calibration	Data: (Nev	v Instrumen	nt)									
Unit(s)	Nominai	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR		
°C		N,A,		0.000	-0.2	Y	-1.0	1.0	0.10	>4:1		

#### This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

100.000

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is celculated using the expanded measurement uncertainty. Uncertainty evaluation includes the Instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level, in tolerance conditions are based on test results failing within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in fuil, without written approvel of Control Company.

99,5

γ

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tot=In Toterance; Min/Max=Acceptance Renge; ±U=Expended Meesurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominel(Rounded) - Toterance; Max = As Left Nominal(Rounded) + Toterance; Date=MM/DD/YY

Nicel Rodriguez, Quality Manager

N.A.

l'a lor Aaron Judice, Technicel Ma

99.0

101.0

0.059

>4:1

## Maintaining Accuracy:

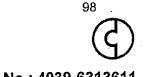
In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its eccuracy. There is no exect way to determine how long calibration will be mainteined. Water-Proof Thermometer °F/°Cs change little, if any at ell, but can be affected by aging, temperature, shock, and contamination.

### **Recalibration:**

°C

For factory calibration and re-certification tracaeble to National Institute of Standards and Technology contect Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com


Control Company Is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Cartificate No. 1760.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Cartificate No. CERT-01805-2005-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company





Calibration Certificate No. 1750.01 Troccabl

ACCRE

Cert. No.: 4039-6313611

N/N/

## Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. Instrument Identification:

Model: 932	27K16	S/N: 1407	54308	Manufac	turer: Cont	rol Compa	any					
Standards	/Equipment	2			<del></del> .			<u>.</u>				
	Desc	ription		Seria	Serial Number Due <u>Date</u>			NIST Tracea	ble Refere	nce		
Tei	mperature Calib	ration Bath TC	179	A45240					;			
	Thermist	or Module	A	A17118 2/24/15			1000	351744				
	Temperat	ture Probe		128	3/12/	15	15-CJ	73J-4-1				
Ter	mperature Calib	ration Bath TC	-	3A444								
	Digital Th	ermometer		14	0073820	1/28/	15	4000-5680560				
Certificate	Information	n:										
Technician:	68	Procedure:	CAL-03	(	Cal Date: 10	/31/14		Due Date:	10/31/16			
Test Conditi	ions: 23.0	℃ 43.0	%RH 10	021 mBar								
Calibratio	n Data: (Nev	v Instrumen	t)			-	· · <b></b> _ · ·					
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	in Toi	Min	Max	±U	TUR		
°C	-	N.A.		0.000	-0.3	Y	-1.0	1.0	0.10	>4:1		
		N.A.		100.000	99.8	Y	99.0	101.0	0.059	>4:1		

## This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated using the expanded uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level, in tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item cellbrated, This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominat=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Micol Kodricquez Nicol Rodriguez, Queility Manager

fali lan Aaron Judice, Technical Manager

## Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long catibration will be meintained. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

## **Recalibration:**

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) Amarican Association for Laboratory Accreditetion, Certificate No. 1750.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Verilas, Certificate No. CERT-01805-2008-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

O 2009 Control Company

Cert. No.: 4039-7216695

DD

99

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Cust ID:Horizon Engineering, 13585 NE Whitaker Way, , Portland, OR 97230 U.S.A. (RMA:1000681) Instrument Identification:

Model: 902	205-22	S/N: 130	301083	Manufa	cturer: Con	trol Comp	any				
Standards	/Equipment				· · · · · · · · · · · · · · · · · · ·			e.			
	Descr	iption		Seria	Serial Number Due Date			<u>NIST Tracea</u>	ble Refere	nce	
Те	mperature Calib	ration Bath TC	-179	A	A45240						
	Thermisto	or Module	A	A17118 3/03/16			1000	371058			
	Temperat	ure Probe		3039	4/02/	16	15A0I	P2S-20-1			
Te	mperature Calib Digital The		-231		\79341 0070752	2/20/*	16	4000-6561724			
Certificate	Information										
Technician: Test Conditi		Procedure: PC 50.0		ہ 011 mBar	Cal Date: 11	/16/15		Due Date:	11/16/16		
Calibratio	n Data:		-				· · · ·				
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	in Tol	Min	Max	±U	TUR	
°C	0.000	-0.3	Y	0.000	-0.3	Y	-1.0	1.0	0.10	>4:1	
	100.000	99.8	Y	100.000	99.8	Y	99.0	101.0	0.059	>4:1	

## This instrument was calibrated using instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Relico of at least 4:1 is meintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty aution includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty. Uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol='in Toleranca; Min/Max=Acceptence Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncerteinty Retio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Dete=MM/DD/YY

Ylical Lodricuus Nicol Rodriguez, Quality Manager

fai Aan. Aeron Judice, Technical Manag

## **Maintaining Accuracy:**

ac-MR

ACCREDITED

Calibration Certificate No. 1750.01

In our opinion once calibrated your Water-Proof Thermometer *F/*C should maintain its accuracy. There is no exacl way to determine how long calibration will be maintained. Weter-Proof Thermometer *F/*Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

### **Recalibration:**

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025;2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company is ISO 9001;2008 Quality Certified by (DNV) Det Norske Verliaa, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilaterel Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company

Hac M	Calibration	<u>. 1750.01</u>	'025, <i>I</i>	ANSI/NC	mplies w SL Z540	)-1, ar	nd 9001			¹⁰⁰ 9-7216696
Cust ID:Horizo Instrument			itaker Way	, , Portland, C	R 97230 U.S.A	. <b>(</b> RMA:	:1000681)		SH	
Model: 9020	)5-22	S/N: 130	306869	Manufa	acturer: Cont	rol Com	, pany			
Standards/	Equipment									
	<u>Descr</u>	iption		<u>Seri</u>	<u>al Number</u>	<u>Due</u> I	Date	NIST Tracea	ble Refere	ence
Tem	perature Calib	ration Bath TC	-179		A45240					
	Thermisto	or Module			A17118	3/03/16		1000371058		
	Temperat				3039	4/02	2/16	15A0P2S-20-1		
Tem		ration Bath TC	-231		A79341	2/20	Me	4000 6	561724	
	Digital The			1.	30070752	2120	0/10	4000-0		
Certificate	Information	11								
Technician: Test Conditio		Procedure: PC 50.0	-	011 mBar	Cal Date: 11/	16/15		Due Date: *	11/16/16	
Calibration	Data:									
Unit(s)	Nominal	As Found	in Tol	Nominai	As Left	in Tol	Min	Max	±U	TUR
°C	0,000	-0.2	Y	0.000	-0,2	Y	-1.0	1.0	0.10	>4:1

100.000

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology. A Test Uncertainty Rallo of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is celocitated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This cartificate shaft not be reproduced except in full, without written approval of Control Company.

99,8

Y

Nominal=Standard's Reading: As Left=Instrument's Reading; In Tol='in Tolerance; MiniMax=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Retio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominat(Rounded) + Tolerance; Date=MM/DD/YY

Nicol Rodriguez, Quesity Manager

99.8

fili Nam. Aaron Judice, Technical Manager

99.0

0,059

>4:1

101.0

## **Maintaining Accuracy:**

100.000

In our opinion once colibrated your Water-Proof Thermometer *F/*C should meintain its accuracy. There is no exact way to determine how long calibration will be mainteined. Water-Proof Thermometer *F/*Cs change little, if any at all, but can be affected by eging, temperature, shock, and contamination.

## **Recalibration:**

۴C

For factory calibration and re-certification traceabla to Netional Institute of Standards and Technology contact Control Company.

Y

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditetion, Certificate No. 1750.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2008-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company

HORIZON ENGINEERING 16-5702

Cert. No.: 4039-6506386

PAT

0.059

>4:1

101.0

101



Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. Instrument Identification:

Model: 932	7K16	S/N: 1500	067645	Manufa	cturer: Cont	rol Compa	any					
Standards	/Equipment	· · · · · · · · · · · · · · · · · · ·		<u> </u>								
	Descr	iption		<u>Ser</u> i	Serial Number Due Date				NIST Traceable Reference			
Ter	nperature Calib	ration Bath TC	-231	-	A79341							
	Thermiste	or Module			A27129	11/04/	15	1000	365407			
	Temperat	ure Probe			5202	11/19/	16	6-CV9	9 <b>Y2-1-</b> 1			
	Thermiste	or Module			A17118	2/24/	15	1000351744				
	Temperat	ure Probe			3039	3/12/	15	15-CJ73J-1-1				
Ter	nperature Calib	ration Bath TC	-179		A45240							
Certificate	Information	1:										
Technician:	68	Procedure	: CAL-03		Cal Date: 1/	28/15	Due Date: 1/28/17					
Test Conditi	ons: 25.0	)°C 32.0	%RH 1	022 mBar								
Calibratio	n Data: (Nev	Instrumer	nt)			· · · ·						
Unit(s)	Nominal	As Found	in Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR		
°C					-0.4	Y	-1.0	1.0	0.10	>4:1		

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

100.000

A Tost Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level, in tolerance conditions are based on test results failing within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

99.4

Y

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measuremant Uncertainty; TUR=Test Uncertainty Ratic; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Toleranca; Date=MM/DD/YY

licol Rodriguez, Quality Manager

N.A.

ACCREDITED

Calibration

8m Aeron Judice, Tachnical Manager

99.0

### **Maintaining Accuracy:**

In our opinion once calibrated your Water-Proof Thermometer *F/*C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer *F/*Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

## **Recalibration:**

°C

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025;2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company is ISO 9001;2008 Quelity Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Leboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company

## Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001



Cert. No.: 4039-7175480

IM

1.0

101.0

0.10

0.059

>4:1

>4:1

#### Certificate No. 1750.01 Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. **Instrument Identification:** 

								JNI		
Model: 9327	9327K16 S/N: 151830463 Manuf		acturer: Control Company							
Standards/	Equipment				4					
•	Desci	ription		Se	rial Number	<u>Due D</u>	<u>ate</u>	NIST Traces	able Refer	ence
Tem	perature Calib	ration Bath TC	-179	•	A45240					
	Thermiste	or Module			A17118	3/03/	16	1000	371058	
Temperature Probe			3039	4/02/	16	15A0	)P2S-20-1			
Temperature Calibration Bath TC-231 Thermistor Module Temperature Probe				A79341						
				A27129	11/04/	•				
				5202 11/19/16		6-CV9Y2-1-1				
Certificate I	nformation	า:								
Technician: 68 Procedure: CAL-03				Cal Date: 10/30/15 Due Date: 10/30/17						
Test Conditions: 24.4°C 50.0 %RH 1012 mBar										
Calibration	Data: (Nev	v instrumen	it)							
Unit(s)	Nominal	As Found	in Tol	Nom <b>in</b> al	As Left	In Tol	Min	Max	±U	TUR
		· · · · · · · · · · · · · · · · · · ·	·			1			1	

#### _____

0.000

100.000

This instrument was calibrated using instruments Traceable to National Institute of Standards and Technology. A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a covarage factor k=2 to epproximate a 95% confidence level. In tolerance conditions are based on test results falling within specified timils with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shell not be reproduced except in full, without written epproval of Control Company.

-0.3

100.2

Y

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

lical Lodriguez, Guality Manager

N.A

N.A.

San Aazon Judice, Technical Manage

-1.0

99.0

#### Maintaining Accuracy:

AN 1976,

ac MRA

(marily

ACCREDITED

Calibration

In our opinion once calibrated your Water-Proof Tharmometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change-little, if any at all, but can be affected by aging, tamperature, shock, and contamination.

#### **Recalibration:**

°C

°Ĉ

For factory cellbration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboretory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1760.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

. Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company

HORIZON ENGINEERING 16-5702



Usege Glass Client: Plant: Sampling Location:

Test Conditions:______

111

	·	Date: 4/	15/16
Pump JD Pump J Pump 2 Pump 3	Val (mL)	Time (sec) 261,82 131,23 117,34	15/16 Flow (m ¹ /min) 45.8 91.4 102.2
Pump	200 mL	261.82	45.8
Pump 2	200 mL 200 mL 200 mL 200 mL	131.23	9 1.4
Pump 3	200 mL	117.34	102.3
		,	
· · · · · · · · · · · · · · · · · · ·			
		· ·	· · · · · · · · · · · · · · · · · · ·
			· · · · ·
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
-	· · ·	· · · · · · · · · · · · · · · · · · ·	1
	· · ·	·····	
ļ	J	1	

Shared files\Field Data Sheets\Columnated Data Sheets\4 column_M_v1.pdf

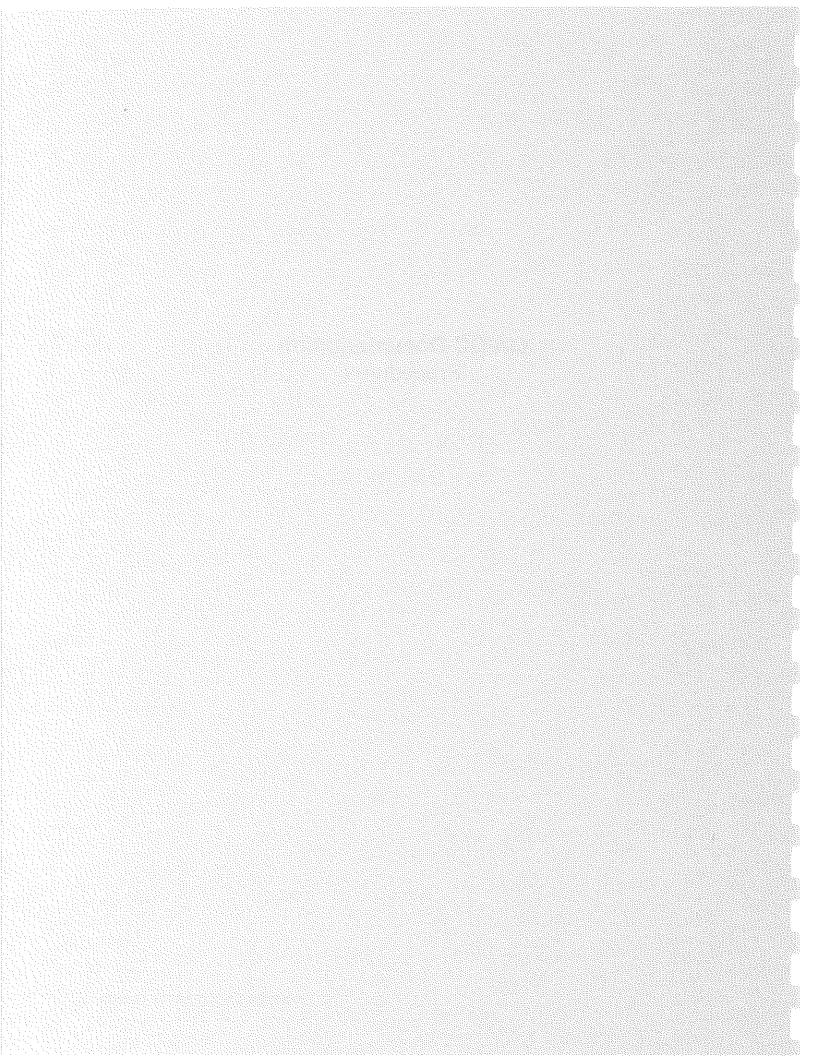
103

HORIZON ENGINEERING 16-5702

#### BAROMETER CALIBRATIONS

JH					mew
BAROMETER CALIBRATIONS ELEVATION OF STANDARD 30 FT		inHg	inHg NWS	Diff %	inHg
TV 1			#N/A	#N/A	#N/A
TV 2			#N/A	#N/A	#N/A
TV 3	1/8/2016	30.10	30.02	0.3%	0.08
TV 4	1/15/2016	30.20	30.06	0.5%	0.14
TV 5	1/8/2016	30.20	30.02	0.6%	0.18
Portiand Shop Barometer			#N/A	#N/A	#N/A
Shortridge #1 (HE 276)	1/8/2016	30.30	30.02	0.9%	0.28
Shortridge #2 (HE 028)	1/8/2016	30.00	30.02	-0.1%	-0.02
Shortridge #3 (HE 226)	1/8/2016	30.00	30.02	-0.1%	-0.02
Shortridge #4 (HE 325)	1/13/2016	29.93	29.90	0.1%	0.03
Shortridge #5 (HE 414)	1/15/2016	29.99	30.06	-0.2%	-0.07
Shortridge #6	1/13/2016	29.93	29.80	0.4%	0.13
Shortridge #7 (HE 324)	1/8/2016	30.10	30.02	0.3%	0.08
Shortridge #8			#N/A	<b>#N/</b> A	

CARL SLIMP


1

#N/A

#N/A

.

### QA/QC Documentation Procedures



#### Quality Assurance/Quality Control

**Introduction** The QA procedures outlined in the U. S. Environmental Protection Agency (EPA) test methods are followed, including procedures, equipment specifications, calibrations, sample extraction and handling, calculations, and performance tolerances. Many of the checks performed have been cited in the Sampling section of the report text. The results of those checks are on the applicable field data sheets in the Appendix.

**Continuous Analyzer Methods** Field crews operate the continuous analyzers according to the test method requirements, and Horizon's additional specifications. On site quality control procedures include:

- Analyzer calibration error before initial run and after a failed system bias or drift test (within ± 2.0% of the calibration span of the analyzer for the low, mid, and high-level gases or 0.5 ppmv absolute difference)
- System bias at low-scale (zero) and upscale calibration gases (within ± 5.0% of the calibration span or 0.5 ppmv absolute difference)
- Drift check (within ±3.0% of calibration span for low, and mid or highlevel gases, or 0.5 ppmv absolute difference)
- System response time (during initial sampling system bias test)
- Checks performed with EPA Protocol 1 or NIST traceable gases
- Leak free sampling system
- Data acquisition systems record 10-second data points or one-minute averages of one second readings
- NO₂ to NO conversion efficiency (before each test)
- Purge time (≥ 2 times system response time and will be done before starting run 1, whenever the gas probe is removed and re-inserted into the stack, and after bias checks)
- Sample time (at least two times the system response time at each sample point)
- Sample flow rate (within approximately 10% of the flow rate established during system response time check)
- Interference checks for analyzers used will be included in the final test report
- Average concentration (run average  $\leq$  calibration span for each run)
- Stratification test (to be done during run 1 at three(3) or twelve(12) points according to EPA Method 7E; Method 3A, if done for molecular weight only, will be sampled near the centroid of the exhaust; stratification is check not normally applicable for RATAs)

**Manual Equipment QC Procedures** On site quality control procedures include pre- and post-test leak checks on trains and pitot systems. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run is repeated. Thermocouples and readouts are verified in the field to read ambient prior to the start of any heating or cooling devices.

**Sample Handling** Samples taken during testing are handled to prevent contamination from other runs and ambient conditions. Sample containers are glass, TeflonTM, or polystyrene (filter petri dishes) and are pre-cleaned by the laboratory and in the Horizon Engineering shop. Sample levels are marked on containers and are verified by the laboratory. All particulate sample containers are kept upright and are delivered to the laboratory by Horizon personnel.

**Data Processing** Personnel performing data processing double-check that data entry and calculations are correct. Results include corrections for field blanks and analyzer drift. Any abnormal values are verified with testing personnel and the laboratory, if necessary.

After results are obtained, the data processing supervisor validates the data with the following actions:

- verify data entry
- · check for variability within replicate runs
- account for variability that is not within performance goals (check the method, testing, and operation of the plant)
- verify field quality checks

**Equipment Calibrations** Periodic calibrations are performed on each piece of measurement equipment according to manufacturers' specifications and applicable test method requirements. The Oregon Department of Environmental Quality (ODEQ) <u>Source Testing Calibration Requirements</u> sheet is used as a guideline. Calibrations are performed using primary standard references and calibration curves where applicable.

**Dry Gas Meters** Dry gas meters used in the manual sampling trains are calibrated at three rates using a standard dry gas meter that is never taken into the field. The standard meter is calibration verified by the Northwest Natural Gas meter shop once every year. Dry gas meters are post-test calibrated with documentation provided in test reports.

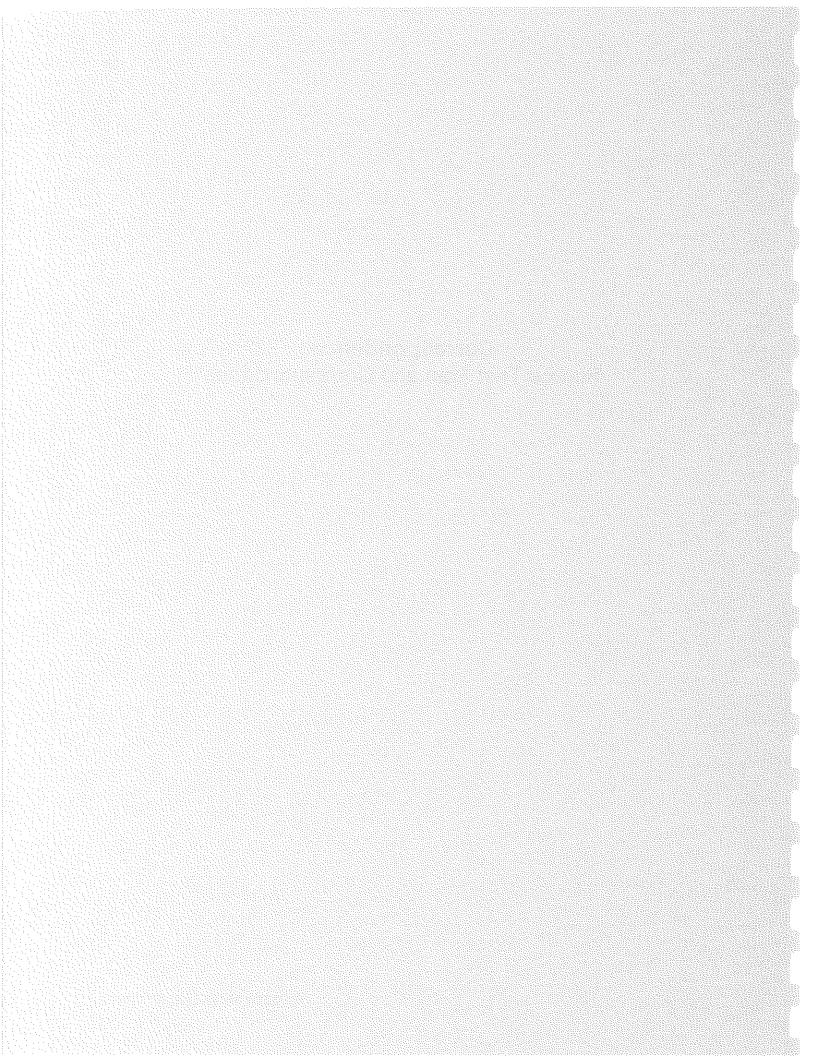
#### Quality Assurance/Quality Control

**Thermocouples** Sample box oven and impinger outlet thermocouples are calibration checked against an NIST traceable thermocouple and indicator system every six months at three points. Thermocouple indicators and temperature controllers are checked using a NIST traceable signal generator. Readouts are checked over their usable range and are adjusted if necessary (which is very unusual). Probe thermocouples are calibrated in the field using the ALT-011 alternate Method 2 calibration procedure, which is documented on the field data sheet for the first run the probe thermocouple was used.

**Pitots** Every six months, S-type pitots are calibrated in a wind tunnel at three points against a standard pitot using inclined manometers. They are examined for dents and distortion to the alignment, angles, lengths, and proximity to thermocouples before each test. Pitots are protected with covers during storage and handling until they are ready to be inserted in the sample ports.

**Nozzles** Stainless steel nozzles are calibrated twice each year by checking for nicks or dents and making diameter measurements in triplicate. Quartz and borosilicate glass nozzles (and often stainless steel nozzles) are commonly calibrated in the field by taking the average of three consecutive diameter measurements. These field calibrations are recorded on the field data sheet for the first run the nozzle was used.

.


.

.

I

## **Correspondence** Source Test Plan and Correspondence

**HORIZON ENGINEERING 16-5702** 





13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

March 24, 2016

Project No. 5702

Mr. George Davis Oregon Department of Environmental Quality Northwestern Region – Portland Office 700 NE Multnomah St., Suite 600 Portland, OR 97232

Mr. Michael Eisele, P.E. Oregon Department of Environmental Quality Western Region – Salem Office 4026 Fairview Industrial Drive Salem, OR 97302

Re: Source Testing:

Bullseye Glass Co. 3722 SE 21st Ave Portland, OR 97202

This correspondence is notice that Horizon Engineering is to do source testing for the above-referenced facility, tentatively scheduled for April 2016. This will serve as the Source Test Plan unless changes are requested prior to the start of testing.

- 1. Source to be Tested: Glass Furnace T7
- 2. Test Locations: Baghouse BH-1 Inlet and Outlet
- 3. Purpose of the Testing: Performance testing for new baghouse
- 4. Source Description: Source description will be included in the final report.
- 5. Pollutants to be Tested: particulate matter (PM), Total Cr, and Cr⁺⁶.
- Test Methods to be Used: Testing will be conducted in accordance with EPA methods in <u>Title 40 Code of Federal Regulations Part 60 (40 CFR 60)</u>, Appendix A, from the Electronic Code of Federal Regulations (<u>www.ecfr.gov</u>), January, 2014; Oregon Department of Environmental Quality (ODEQ) methods in <u>Source Sampling Manual Volume 1</u>, April, 2015.

Moisture: EPA Method 4 (incorporated w/ ODEQ Method 5)	
PM: ODEQ Method 5 (filterable and condensable PM; isokine	netic
impinger train technique)	
Total Cr & Cr ⁺⁶ : SW-846 Method 0061 (isokinetic recirculatory impinger technique with Cr ⁺⁶ analysis by IC with Post-Column Derivatization-Visible Absorption and Total Cr analysis b ICP-MS)	

- 7. **Continuous Analyzer Data Recording:** Data acquisition system (DAS) will be used. Strip chart records may be used as backup. One-minute averages of one-second readings are logged. Run averages, tabulated data and the graphic outputs from the DAS are included in the test reports.
- 8. **Continuous Analyzer Gas Sampling:** EPA Method 3A will be sampled at one point near the exhaust centroid because it is not done for a correction. Particulate and gas sampling will be simultaneous.
- 9. **Criteria Location:** It is assumed today, but it will be confirmed on or before the test day, that each test port location meets criteria in EPA Methods 1 and 2.
- 10. Quality Assurance/Quality Control (QA/QC): Method-specific quality assurance/quality control procedures must be performed to ensure that the data is valid for determining source compliance. Documentation of the procedures and results will be presented in the source test report for review. Omission of this critical information may result in rejection of the data, requiring a retest. This documentation will include at least the following:

<u>Continuous analyzer procedures:</u> Field crews will operate the analyzers according to the test method requirements with additional data backup. Onsite procedures include:

EPA Method 3A:

- Analyzer calibration error before initial run and after a failed system bias or drift test (within ± 2.0% of the calibration span of the analyzer for the low, mid, and high-level gases or 0.5 ppmv absolute difference)
- System bias at low-scale (zero) and upscale calibration gases (within ± 5.0% of the calibration span or 0.5 ppmv absolute difference)
- Drift check (within ±3.0% of calibration span for low, and mid or high-level gases, or 0.5 ppmv absolute difference)
- System response time (during initial sampling system bias test)
- Checks performed with EPA Protocol 1 or NIST traceable gases except zero gas
- Zero gas meets the definition for zero air material as defined by 40 CFR 72.2
- Leak free sampling system
- Data acquisition systems record 10-second data points or one-minute averages of one second readings

HORIZON ENGINEERING

¹ EPA Method 3A will only be measured at the baghouse outlet.

- Purge time (≥ 2 times system response time and will be done before starting run 1, whenever the gas probe is removed and re-inserted into the stack, and after bias checks)
- Sample time (at least two times the system response time at each sample point)
- Sample flow rate (within approximately 10% of the flow rate established during system response time check)
- Interference checks for analyzers used will be included in the final test report
- Average concentration (run average ≤ calibration span for each run)
- Stratification test (to be done during run 1 at three(3) or twelve(12) points according to EPA Method 7E; EPA Method 3A if done for molecular weight only will be sampled near the centroid of the exhaust; and stratification check not normally applicable for RATAs)

<u>Manual equipment procedures:</u> Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

- Operators will perform pre- and post-test leak checks on the sampling system and pitot lines.
- Thermocouples attached to the pitots and probes are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed. Thermocouples must agree within ±2°F with the reference thermometer. Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started.
- Nozzles are inspected for nicks or dents and pitots are examined before and after each use to confirm that they are still aligned.
- Pre- and post-test calibrations on the meter boxes will be included with the report, along with semi-annual calibrations of critical orifices, pitots, nozzles and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators).
- Blank reagents are submitted to the laboratory with the samples. Liquid levels are marked on sample jars in the field and are verified by the laboratory.
- The Oregon Method 5, 7, and 17 minimum sample volume shall be the greater of 31.8 dscf or sufficient to ensure a minimum ISDL of one-half (1/2) the emission standard.

<u>SW-846 Method 0061</u>: Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

- 0.5 M KOH will be used to ensure that the pH of the solution is above 8.5 after sampling.
- pH of the impinger solution will be checked during sample recovery.
- The sample train will be purged with N₂ at a rate of 10 L/min for 30 minutes.
- If the stack temperature is above 200 ⁰F, the Teflon sample and recirculating lines may be placed in an ice bath to keep the recirculated reagent cool enough so it does not turn to steam.

#### HORIZON ENGINEERING

<u>Audit Sample Requirement:</u> The EPA Stationary Source Audit Sample Program was restructured and promulgated on September 30, 2010 and was made effective 30 days after that date. The Standard requires that the Facility or their representative <u>must</u> order audit samples if they are available, with the exception of the methods listed in 40 CFR 60, 60.8(g)(1). The TNI website is referred to for a list of available accredited audit Providers and audits (<u>www.nelac-institute.org/ssas/</u>). If samples are not available from at least two accredited Providers they are not required. Currently, accredited Providers offer audit samples for EPA Methods 6, 7, 8, 12, 13A, 13B, 26, 26A, 29 and 101A. Based on the above, Bullseye Glass is not required to obtain audit samples for this test program.

- 11. Number of Sampling Replicates and their Duration: One (1) test run of approximately sixteen hours at each location. Inlet and outlet testing will be simultaneous. In no case will sampling replicates be separated by twentyfour (24) or more hours, unless prior authorization is granted by the Department.
- Reporting Units for Results: Results will be expressed as concentrations (ppmv, μg/dscm. or gr/dscf), as rates (lb/hr), and on a production basis if that information is provided.

13. Horizon Engrg. Contact:		Thomas Rhodes or
	Fax E-mail	(503) 255-5050 (503) 255-0505 <u>trhodes@montrose-env.com</u>
14. Consultant:	Cell E-mail	John Browning (503) 212-2515 (503) 412-9842 jbrowning@bridgeh2o.com
15. Source Site Pe	<b>rsonnel:</b> Fax E-mail	Dan Schwoerer (503) 232-8887 (503) 238-9963 danschwoerer@bullseyeglass.com
16. <b>Regulatory Co</b> i	ntacts: Fax Email	George Davis (503) 229-5534 (503) 229-6945 <u>davis.george@deg.state.or.us</u>
	Fax E-mail	Michael Eisele (503) 378-5070 (503) 378-4196 <u>EISELE.Michael@deq.state.or.us</u>

- 17. Applicable Process/Production/Control Information: Operating data that characterize the source are considered to be:
  - Type and quantity of material being processed 1,200 to 1,350 pounds of batch materials to make dark green cathedral glass with a chromium content greater than 1.00%

#### HORIZON ENGINEERING

#### HORIZON ENGINEERING 16-5702

- Furnace temperature Furnace to be regulated between the temperature of 2,100⁰F and 2,575⁰F as per usual production parameters.
- Redox settings Combustion gasses to be mixed at a ratio of 1.02 to 1.20 parts natural gas for 2.0 parts oxygen as per usual production parameters
- Baghouse pressure drop Pressure readings will be tracked during the testing cycle
- All normally recorded process information

#### <u>Process/Production/Control information is to be gathered for each test</u> <u>run by the Source Site Personnel and provided to Horizon for inclusion</u> <u>in the report.</u>

The source must operate at the rate specified in the Permit during testing. Rates not in agreement with those stipulated in the Permit can result in test rejection for application to determine compliance or emission factor verification. Imposed process limitations could also result from atypical rates.

If the Permit does not specify a process rate for testing, we recommend a normal maximum rate.

- 18. **Source Test Audit Report:** Source Test Audit Report forms will be submitted along with the source test report for this testing.
- 19. **Plant Entry & Safety Requirements:** The test team will follow internal safety policies and abide by any site specific safety and entry requirements.
- 20. **Responsibilities of Test Personnel:** The test team will consist of one Project Manager and eight Technicians.

#### 21. Tentative Test Schedule:

- Day 1: Mobilize
- Day 2: Test
- Day 3: Demobilize
- 22. Other Considerations: The testing locations for the baghouse inlet are on a horizontal section of ducting. Depending on the port orientation, to prevent the recirculating impinger solution from draining out of the nozzle, the SW-846 Method 0061sample train may only be sampled from the horizontal port.
- 23. Administrative Notes: Unless notified prior to the start of testing, this test plan is considered to be approved for compliance testing of this source. A letter acknowledging receipt of this plan and agreement on the content (or changes as necessary) would be appreciated.

The Department will be notified of any changes in source test plans prior to testing. It is recognized that significant changes not acknowledged, which could affect accuracy and reliability of the results, could result in test report rejection.

Source test reports will be prepared by Horizon Engineering and will include all results and example calculations, field sampling and data reduction procedures, laboratory analysis reports, and QA/QC documentation. Source

#### HORIZON ENGINEERING

test reports will be submitted to you within 45days of the completion of the field work, unless another deadline is agreed upon. Bullseye Glass should send one (1) hardcopy of the completed source test report to you at the address above.

Any questions or comments relating to this test plan should be directed to me.

Sincerely,

Thomas Rhodes, QSTI District Manager Horizon Engineering, an affiliate of Montrose Environmental Group, Inc.

For information on Horizon Engineering and Montrose Environmental, go to <u>www.montrose-env.com</u>

THIS IS THE LAST PAGE OF THE DOCUMENT

#### HORIZON ENGINEERING



13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

April 25, 2016

Project No. 5702

Mr. George Davis Oregon Department of Environmental Quality Northwestern Region – Portland Office 700 NE Multnomah St., Suite 600 Portland, OR 97232

Mr. Michael Eisele, P.E. Oregon Department of Environmental Quality Western Region – Salem Office 4026 Fairview Industrial Drive Salem, OR 97302

Re: Source Test Plan Addendum:

Bullseye Glass Co. 3722 SE 21st Ave Portland, OR 97202

The purpose of this correspondence is to submit an addendum to the Bullseye Glass Co. Source Test Plan submitted to you on April 8, 2016.

As recently discussed, the normal operation of the glass furnace T7 and its control device (baghouse BH-1) will include periodic pulse jet cleaning of the filter bags to maintain optimum filtration efficiency. It has been observed that during pulse jet cleaning, filtered particulate matter potentially flows towards the baghouse inlet ducting where the test sample probes will be located. In order to eliminate the potential for filtered particulate matter being entrained into the sampling probe thereby producing biased test results we are proposing to pause inlet sampling during periods of pulse jet cleaning. We anticipate approximately 4 to 6 cleaning cycles lasting about 5 minutes each distributed throughout the 16 hour test period. As such, we propose to addend item 17 of the source test plan as follows:

 Pulse jet cleaning – Pause inlet sampling during pulse jet cleaning cycles and record the time and duration of the pause

Bullseye Glass Co. has decided to include two additional test runs for total Cr & Cr⁺⁶ at the baghouse outlet. These additional runs will be conducted during Run 2 and Run 3.

Any questions or comments relating to this test plan should be directed to me.

Sincerely,

112

Thomas Rhodes, QSTI District Manager Horizon Engineering, an affiliate of Montrose Environmental Group, Inc.

For information on Horizon Engineering and Montrose Environmental, go to <u>www.montrose-env.com</u>

THIS IS THE LAST PAGE OF THE DOCUMENT

#### HORIZON ENGINEERING

Clients\TestPlans\2016\BullseyeGlass\5702_v0



13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

April 8, 2016

Project No. 5702

Mr. George Davis Oregon Department of Environmental Quality Northwestern Region – Portland Office 700 NE Multhomah St., Suite 600 Portland, OR 97232

Mr. Michael Eisele, P.E. Oregon Department of Environmental Quality Western Region – Salem Office 4026 Fairview Industrial Drive Salem, OR 97302

Re: Source Testing:

Bullseye Glass Co. 3722 SE 21st Ave Portland, OR 97202

This correspondence is notice that Horizon Engineering is to do source testing for the above-referenced facility, tentatively scheduled for April 2016. This will serve as the Source Test Plan unless changes are requested prior to the start of testing.

- 1. Source to be Tested: Glass Furnace T7
- 2. Test Locations: Baghouse BH-1 Inlet and Outlet
- 3. **Purpose of the Testing:** Performance testing for new baghouse. Cr⁺⁶ emissions will be estimated using the Cr⁺⁶ inlet results and the PM removal efficiency.
- 4. Source Description: Source description will be included in the final report.
- 5. Pollutants to be Tested: particulate matter (PM), Total Cr, and Cr⁺⁶.
- Test Methods to be Used: Testing will be conducted in accordance with EPA methods in <u>Title 40 Code of Federal Regulations Part 60 (40 CFR 60)</u>, Appendix A, from the Electronic Code of Federal Regulations (<u>www.ecfr.gov</u>), January, 2014; Oregon Department of Environmental Quality (ODEQ) methods in <u>Source Sampling Manual Volume 1</u>, April, 2015.

Baghouse Inlet	
Flow Rate:	EPA Methods 1 and 2 (S-type pitot w/ isokinetic traverses)
$CO_2$ and $O_2$ :	Assume same molecular weight as the outlet
Moisture:	EPA Method 4 (incorporated w/ ODEQ Method 5)
PM:	ODEQ Method 5 (filterable and condensable PM; isokinetic
Total Cr & Cr ⁺⁶ :	SW-846 Method 0061 (isokinetic recirculatory impinger train technique with Cr ⁺⁶ analysis by IC with Post-Column Derivatization-Visible Absorption and Total Cr analysis by ICP-MS)
Baghouse Outle	t
Flow Rate:	EPA Methods 1 and 2 (S-type pitot w/ isokinetic traverses)
Fixed Gases:	EPA Method 3C (Tedlar bags with analysis by GC/TCD for CH ₄ , N ₂ , O ₂ , & CO ₂ )
Moisture:	EPA Method 4 (incorporated w/ ODEQ Method 5)
PM:	ODEQ Method 5 (filterable and condensable PM; isokinetic impinger train technique)

- 7. **Continuous Analyzer Data Recording:** Data acquisition system (DAS) will be used. Strip chart records may be used as backup. One-minute averages of one-second readings are logged. Run averages, tabulated data and the graphic outputs from the DAS are included in the test reports.
- 8. **Continuous Analyzer Gas Sampling:** EPA Method 3A will be sampled at one point near the exhaust centroid because it is not done for a correction. Particulate and gas sampling will be simultaneous.
- 9. **Criteria Location:** It is assumed today, but it will be confirmed on or before the test day, that each test port location meets criteria in EPA Methods 1 and 2.
- 10. Quality Assurance/Quality Control (QA/QC): Method-specific quality assurance/quality control procedures must be performed to ensure that the data is valid for determining source compliance. Documentation of the procedures and results will be presented in the source test report for review. Omission of this critical information may result in rejection of the data, requiring a retest. This documentation will include at least the following:

<u>Manual equipment procedures:</u> Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

- Operators will perform pre- and post-test leak checks on the sampling system and pitot lines.
- Thermocouples attached to the pitots and probes are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed. Thermocouples must agree within ±2°F with the reference thermometer.

#### HORIZON ENGINEERING

Clients\TestPlans\2016\BullseyeGlass\5702_v2

¹ It is anticipated that several Tedlar bag samples will be taken during the run to encompass the entire length of the test run.

Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started.

- Nozzles are inspected for nicks or dents and pitots are examined before and after each use to confirm that they are still aligned.
- Pre- and post-test calibrations on the meter boxes will be included with the report, along with semi-annual calibrations of critical orifices, pitots, nozzles and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators).
- Blank reagents are submitted to the laboratory with the samples. Liquid levels are marked on sample jars in the field and are verified by the laboratory.
- The Oregon Method 5, 7, and 17 minimum sample volume shall be the greater of 31.8 dscf or sufficient to ensure a minimum ISDL of one-half (1/2) the emission standard.

<u>SW-846 Method 0061:</u> Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

- 0.5 M KOH will be used to ensure that the pH of the solution is above 8.5 after sampling.
- pH of the impinger solution will be checked during sample recovery.
- pH of the impinger solution may be checked periodically during the test run. The sample train will be leak check before and after any disassembly that may be required. If additional KOH is added, the volume will be recorded.
- The sample train will be purged with N₂ at a rate of 10 L/min for 30 minutes.
- If the stack temperature is above 200 ⁰F, the Teflon sample and recirculating lines may be placed in an ice bath to keep the recirculated reagent cool enough so it does not turn to steam.

<u>Audit Sample Requirement:</u> The EPA Stationary Source Audit Sample Program was restructured and promulgated on September 30, 2010 and was made effective 30 days after that date. The Standard requires that the Facility or their representative <u>must</u> order audit samples if they are available, with the exception of the methods listed in 40 CFR 60, 60.8(g)(1). The TNI website is referred to for a list of available accredited audit Providers and audits (<u>www.nelac-institute.org/ssas/</u>). If samples are not available from at least two accredited Providers they are not required. Currently, accredited Providers offer audit samples for EPA Methods 6, 7, 8, 12, 13A, 13B, 26, 26A, 29 and 101A. Based on the above, Bullseye Glass is not required to obtain audit samples for this test program.

- 11. Number of Sampling Replicates and their Duration: Three (3) test runs of approximately sixteen hours at each location. Inlet and outlet testing will be simultaneous. In no case will sampling replicates be separated by twenty-four (24) or more hours, unless prior authorization is granted by the Department.
- 12. **Reporting Units for Results:** Results will be expressed as concentrations (ppmv, μg/dscm. or gr/dscf), as rates (lb/hr), removal efficiency (%), and on a production basis if that information is provided.

#### HORIZON ENGINEERING

13 Horizon Engrg	. <b>Contact:</b> Fax E-mail	Thomas Rhodes or (503) 255-5050 (503) 255-0505 trhodes@montrose-env.com
14. Consultant:	Cell E-mail	John Browning (503) 212-2515 (503) 412-9842 jbrowning@bridgeh2o.com
15. Source Site Pe	r <b>sonnel:</b> Fax E-mail	Dan Schwoerer (503) 232-8887 (503) 238-9963 <u>danschwoerer@bullseyeglass.com</u>
16 <b>Regulatory Contacts:</b> Fax Email		George Davis (503) 229-5534 (503) 229-6945 davis.george@deq.state.or.us
	Fax E-mail	Michael Eisele (503) 378-5070 (503) 378-4196 EISELE.Michael@deg.state.or.us

- 17. Applicable Process/Production/Control Information: Operating data that characterize the source are considered to be:
  - Type and quantity of material being processed 1,200 to 1,350 pounds of batch materials to make dark green cathedral glass with a high chromium content. Cullet will not be used during the source test.
  - Furnace temperature Furnace to be regulated between the temperature of 2,100⁰F and 2,575⁰F as per usual production parameters.
  - Redox settings Combustion gasses to be mixed at a ratio of 1.00 parts natural gas for 1.90 to 1.80 parts oxygen as per usual production parameters, in a furnace plumbed with natural gas and liquid oxygen
  - Baghouse pressure drop Pressure readings will be tracked during the testing cycle
  - All normally recorded process information

## Process/Production/Control information is to be gathered for each test run by the Source Site Personnel and provided to Horizon for inclusion in the report.

The source must operate at the rate specified in the Permit during testing. Rates not in agreement with those stipulated in the Permit can result in test rejection for application to determine compliance or emission factor verification. Imposed process limitations could also result from atypical rates.

If the Permit does not specify a process rate for testing, we recommend a normal maximum rate.

#### HORIZON ENGINEERING

HORIZON ENGINEERING 16-5702

121

Michael Eisele, Oregon Dept. of Environmental Quality, April 8, 2016

- Source Test Audit Report: Source Test Audit Report forms will be submitted along with the source test report for this testing.
- 19. **Plant Entry & Safety Requirements:** The test team will follow internal safety policies and abide by any site specific safety and entry requirements.
- 20. **Responsibilities of Test Personnel:** The test team will consist of one Project Manager and up to eight Technicians.

21. Tentative Test Schedule:

April 25 (Mon):Mobilize and setupApril 26 (Tues):Begin test Run 1April 27 (Wed):Begin test Run 2April 28 (Thurs):Begin test Run 3April 29 (Fri):Complete testing and demobilize

22. Other Considerations: None known

23. Administrative Notes: Unless notified prior to the start of testing, this test plan is considered to be approved for compliance testing of this source. A letter acknowledging receipt of this plan and agreement on the content (or changes as necessary) would be appreciated.

The Department will be notified of any changes in source test plans prior to testing. It is recognized that significant changes not acknowledged, which could affect accuracy and reliability of the results, could result in test report rejection.

Source test reports will be prepared by Horizon Engineering and will include all results and example calculations, field sampling and data reduction procedures, laboratory analysis reports, and QA/QC documentation. Source test reports will be submitted to you within 45 days of the completion of the field work, unless another deadline is agreed upon. Bullseye Glass should send one (1) hardcopy of the completed source test report to you at the address above.

Any questions or comments relating to this test plan should be directed to me.

Sincerely,

Thomas Rhodes, QSTI District Manager Horizon Engineering, an affiliate of Montrose Environmental Group, Inc.

For information on Horizon Engineering and Montrose Environmental, go to <u>www.montrose-env.com</u>

THIS IS THE LAST PAGE OF THE DOCUMENT

#### HORIZON ENGINEERING

HORIZON ENGINEERING 16-5702







Department of Environmental Quality Western Region Salem Office 4026 Fairview Industrial Dr SE Salem, OR 97302 (503) 378-8240 FAX (503) 373-7944 TTY 711

April 12, 2016

Eric Durrin Bullseye Glass Company 3722 SE 21st Ave Portland, OR 97202

Thomas Rhodes Horizon Engineering 13585 NE Whitaker Way Portland, OR 97230

> Re: Bullseye Glass Company ACDP Permit 26-3135-ST-01 Source Test Plan

Eric Durrin and Thomas Rhodes:

DEQ originally received the source test plan for testing the emissions from glass furnace T7 located at Bullseye Glass in Portland, OR on March 21, 2016. DEQ received the first revised plan on March 25, 2016, and final revised plan on April 8, 2016. The final plan details the methods and approach to determine the emission rate and removal efficiency of particulate matter (PM) from the baghouse inlet and exhaust, and the measurement of total chromium (Cr) and hexavalent chromium (Cr⁺⁶) at the baghouse inlet. DEQ has reviewed the source test plan and is approving it with the following conditions:

#### GENERAL PROCESS CONDITIONS

- 1.) Only regular operating staff may adjust the production process and emission control parameters during the source performance tests and within two (2) hours prior to the tests. Any operating adjustments made during the source performance tests, which are a result of consultation during the tests with source testing personnel, equipment vendors or consultants, may render the source performance test invalid. Any adjustments made during the test must be recorded and included in the test report.
- 2.) Testing shall be performed while the furnace is making glass with the highest percentage of chromium normally used. The furnace must also be fired in the most oxidizing condition under which chromium containing glass is normally made. The ingredients in the batch must be the most oxidizing ingredients normally used to make chromium containing glass. Documentation stating and explaining this must be provided in the test report.

G

- 3.) During source testing the following process parameters must be monitored, recorded, and documented in the source test report. The process parameters below are to be reported for each individual test run and averaged for all test runs, if appropriate.
  - Amount of total chromium in the batch (lbs)
  - Type and quantity of material being processed
  - Oxygen usage (quantity used, hourly minimum)
  - Natural gas usage (quantity used, hourly minimum)
  - Furnace temperature (°F, hourly minimum)
  - Baghouse pressure drop (inches of water column, twice per test run)
  - Weight of charges during each batch (lbs)
  - Time of charges
  - Weight of finished product (lbs)
  - Duration of the charging period (hrs)
  - Duration of refining period (hrs)
  - All other normally recorded information

#### TOTAL CHROMIUM & HEXAVALENT CHROMIUM (EPA SW-846 METHOD 0061) CONDITIONS

- 4.) During sampling, make sure other sampling equipment is not interfering with isokinetic sampling.
- 5.) Take steps to minimize the blockage effects of the sampling probe in the test duct/stack.
- 6.) Testing must be performed using two ports located 90 degrees from each other.
- 7.) The sample shall be collected in a different plane (i.e., different set of ports and a port at a different angle) than the inlet particulate sample.
- 8.) To ensure that representative chromium samples are collected during these extended test intervals (~16 hours), four sequential traverses should be performed on each of the two ports. For example, sampling points should be moved every ten minutes (120 minutes per traverse), rather than performing a single traverse (40 minutes per point). The test run only needs to include one port change.
- 9.) Ensure the recirculating KOH cannot be lost out the sampling nozzle.
- 10.) With the exception of the sampling nozzle (glass) and the silica gel impinger, all of the sampling train components (including connecting fittings) shall be Teflon.

- 11.) In Section 10, Horizon notes that the pH of the KOH sample solution will be measured after the completion of the testing, which is required by the method. Given the duration of the testing you may, to make sure the pH of the absorbing solution remains above 8.5, momentarily pause the test to check the pH periodically throughout the run (e.g., every few hours). Any pH data collected shall be documented on the field data sheet. Leak checks must be completed any time the sampling system is opened. Leak checks of the equipment and any gain in volume by the dry gas meter due to the leak checks must also be documented on the field data sheets. Correct the final sample volume by the amount collected during the leak checks and use the corrected sample volume amount for emissions calculations.
- 12.) Equation 7.6.4 of the method has an error. If Horizon opts to perform a blank correction, please use the following equation:

m = [(S, ug/ml * Vls, ml) - (B, ug/ml * 300 ml)] x d

(Note: The above equation assumes that the impingers are initially charged with 300 mls of the KOH reagent)

- 13.) Verify the KOH recirculation rate is at least 50 ml/min.
- 14.) Record the nitrogen purge rate and duration.
- 15.) Following purging and filtration, the sample solution is to be transferred to polyethylene sample bottles.
- 16.) Following the test, the impinger solution shall be purged with nitrogen and filtered through an acetate membrane filter (0.45 um pore size); refer to Section 5.4.3 of the method.
- 17.) The volume of DI water used to rinse the sampling train directly affects the detection limit. The volume should be sufficient to quantitatively rinse the train; it should not be excessive. We recommend that a pre-measured volume of rinse water (e.g., 100 mls) be provided to the sample recovery person so that the same amount of rinse is used for each test.
- 18.) Take steps to make sure the level of hexavalent chromium in the KOH reagent is as low as possible before testing begins.
- 19.) Meticulously follow the procedures in section 7.1.2 to make sure the sampling trains are free of contaminates.
- 20.) The hexavalent chromium analyses are to be completed within 14 days of sample collection (Section 6.3 of the method).
- 21.) Hexavalent and total chromium test results must be reported as indicated below for each individual test run and averaged for all three test runs. Hand calculations must be provided for at least one test run.
  - ng/dscm
  - lbs/hr
  - lbs/ton of chromium processed
  - Ibs/ton of glass produced

- 22.) Use the particulate removal efficiency to calculate the emission rate of hexavalent and total chromium emissions. Report results as indicated below for each individual test run and averaged for all three test runs. Hand calculations must be provided for at least one test run.
  - ng/dscm
  - lbs/hr
  - lbs/ton of chromium processed
  - Ibs/ton of glass produced

Note that Item 22 data (baghouse *exhaust* chromium emissions) shall be clearly denoted in the report's summary table(s) as 'calculated (vs. measured) values'.

#### FLOW RATE AND MOISTURE (EPA METHODS 1, 2, & 4) CONDITIONS

- 23.) The exhaust duct configurations and flow measurements must meet the EPA Methods 1/1A & 2 criteria. Documentation including clear diagrams must be provided in the source test report.
- 24.) The sample locations must be checked for cyclonic flow. Documentation of this must be provided in the test report.
- 25.) Ensure that the manometer used to record pressure readings meets the criteria of Method 2 Section 6.2.
- 26.) Moisture content of the exhaust stack gas must be determined by EPA Method 4 for each test run. In addition, Section 12.1.7 of EPA Method 4 states "In saturated or moisture droplet-laden gas streams, two calculations of the moisture content of the stack gas shall be made, one using a value based upon the saturated conditions (alternate method) and one based upon the results of the impinger analysis (EPA Method 4). If this is the case, then ODEQ Method 4 (wet bulb/dry bulb) shall be used as the alternative method. At a minimum, two measurements of moisture content using ODEQ Method 4 shall be made for each run and averaged for the run. The lower of the two values as determined by EPA Method 4 and ODEQ Method 4 shall be considered correct for each run.

#### EXHAUST GAS COMPOSITION (EPA METHOD 3C/ASTM METHODS 1946) CONDITIONS

- 27.) N₂, O₂, CO₂, CO, CH₄, C₂H₆, and C₃H₈ concentrations must be determined to calculate the molecular weight of the exhaust. Collect sample at a constant rate over the duration of the test run. Record the sampling rate on the field data sheet.
- 28.) Immediately after the completion of the test run, close the bag valve and keep the bag under positive pressure until the sample is analyzed to ensure any leakage of the bag will not dilute the sample. A band around the bag should be sufficient to accomplish this although other measures may be taken that accomplish the same result. In the event that multiple bags are collected, record the start and end times of the collection periods.
- 29.) Analyze each bag separately and time weight the concentrations to get an average molecular weight over the duration of each test run.

30.) EPA Method 3A is cited in the test plan, DEQ understands that this is an inaccuracy and that Method 3A will not be used during this testing program. The methods referenced in this section will be used to determine the molecular weight in place of Method 3A.

#### PARTICULATE MATTER (EPA/ ODEQ METHOD 5) CONDITIONS

- 31.) During sampling, make sure other equipment is not interfering with isokinetic sampling.
- 32.) Additional (i.e., empty) impingers may be added between the second and fourth impinger to collect condensate from the flue gas.
- 33.) At the inlet sampling location, the particulate sample shall be collected in a different plane (i.e., different set of ports and a port at a different angle) than the chromium sample is being collected.
- 34.) Take steps to minimize the blockage of the sampling location with sampling equipment.
- 35.) To ensure that representative particulate samples are collected during these extended test intervals (~16 hours), four sequential traverses should be performed on each of the two ports. For example, sampling points should be moved every ten minutes (120 minutes per traverse), rather than performing a single traverse (40 minutes per point). The test run only needs to include one port change.
- 36.) If the filter becomes plugged to the point in which isokinetics can no longer be maintained pause the inlet and outlet sampling. Leak check the sampling system with the clogged filter; replace the filter; repeat the check the sampling system; make note of the dry gas meter's volume displacement caused by the leak checks; and continue testing. Correct the final sample volume by the amount collected during the leak checks and use the corrected sample volume amount for emissions calculations.
- 37.) For ODEQ Method 5, the method quantifiable limit (MQL) is 7 mg of PM, which should be taken into consideration when targeting a minimum sample volume and when calculating results. If less than 7 mg is collected, calculations shall be based not on the actual mass of PM collected but on the MQL of 7 mg as a "less than quantifiable limit" value.
- 38.) For both the inlet and outlet of the baghouse provide filterable, condensable and total PM test results. The results must be reported as follows for each test run and averaged for all three test runs. Complete hand calculations must be provided for at least one test run.
  - gr/dscf
  - 1b/hour
  - lb/ton of glass produced
  - % removal efficiency based on lb/hour of the inlet and outlet results

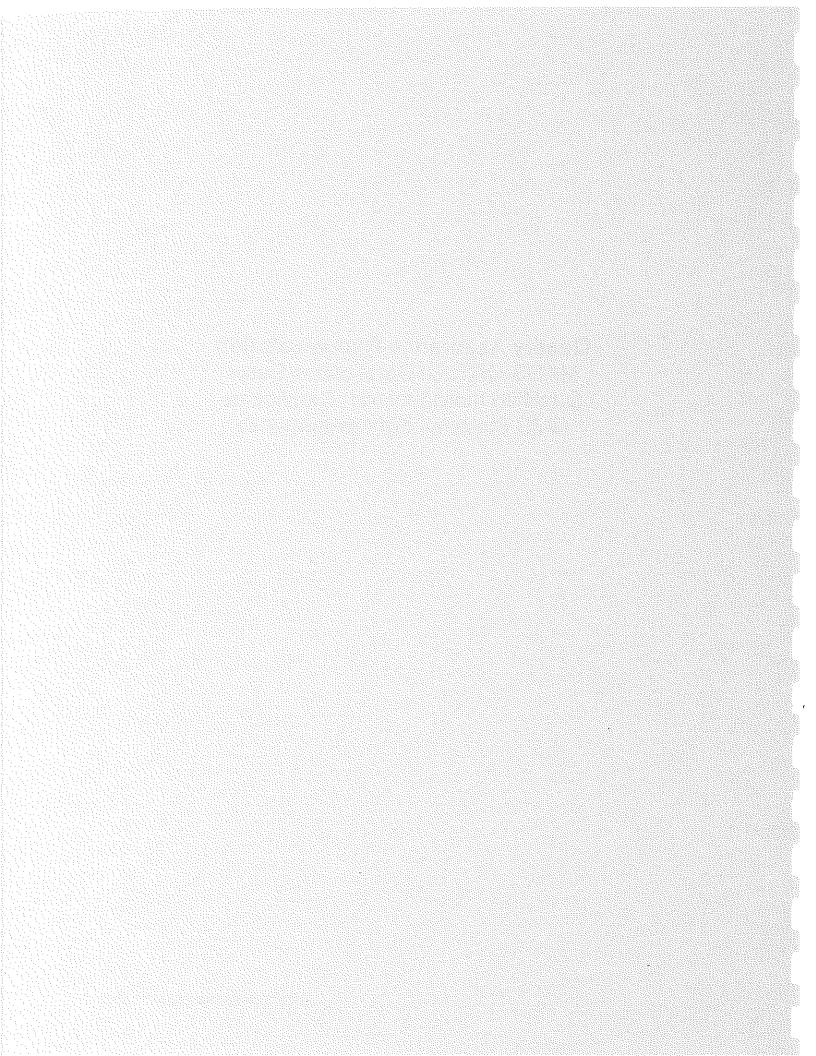
#### GENERAL TESTING CONDITIONS

- 39.) The ODEQ must be notified of any changes in the source test plan and/or the specified methods prior to testing. Significant changes not acknowledged by the DEQ could be basis for invalidating an entire test run and potentially the entire testing program. Documentation of any deviations must include an evaluation of the impact of the deviation on the test data. Deviations may result in rejection of the data, requiring a retest.
- 40.) Method-specific quality assurance/quality control (QA/QC) procedures must be performed to ensure that the data is valid. Documentation of the procedures and results shall be presented in the source test report for review. Omission of this critical information will result in rejection of the data, requiring a retest.
- 41.) A copy of a completed Source Test Audit Report (STAR) for all applicable Methods performed must accompany the submittal of the Source Test Report. A copy of the STAR forms is available electronically from the regional source test coordinator.
- 42.) In an attempt to conserve natural resources and to minimize storage space requirements, the test report should be printed on both sides of each page within the document. DEQ recognizes this may not be feasible for some supporting documentation (i.e. figures, maps, etc.).
- 43.) The source test report shall be submitted to the DEQ within 45 days following the completion of the source test.

DEQ understands that the source test is scheduled for April 26-28, 2016. If you have any questions, please contact me at (503) 378-5070.

Sincerely,

Mike Eisele, PE AQ Source Test Coordinator Western Region-Salem


cc:

George Davis, DEQ: NWR-AQ File

HORIZON ENGINEERING 16-5702

## **Quality Assurance Documentation**

MAQS QSTI/QI Certification Dates Qualified Individual (QI) Certificates QMS Statement of Conformance



QSTI Employee Cert. Group 1 Expirations				Group 2 Expirations Group 3 Expirations			
26 April 2016	No.	Certificate	Exam (QI)	Certificate	Exam (QI)	Certificate	Exam (QI)
		_	24 June 2017		24 June 2017	25 June 2017	25 June 2017
Andy Vella	2008-247	24 December 2017		24 June 2017		25 June 2017	25 June 2017
Brett Sherwood	-	•	25 February 2021	-	26 February 2021	-	-
Carl Slimp	2009-362	22 May 2018	22 May 2018	26 March 2018	26 March 2018	31 July 2018	31 July 2018
C. David Bagwell	2005-022	29 March 2020	29 March 2020	-	17 December 2020	29 March 2020	29 March 2020
Chris Hinson	2014-830		5 September 2018	27 October 2018	27 October 2018	21 November 2018	21 November 2018
Danny Phipps	2016-915	16 December 2020	16 December 2020	17 December 2020	17 December 2020	16 March 2021	17 March 2021
David Wagner	2012-658		3 April 2017	3 April 2017	3 April 2017	3 April 2017	3 April 2017
Jason French	2013-771	19 March 2018	5 August 2017	19 March 2018	11 December 2017	19 March 2018	6 August 2017
Joe Heffernan III	2009-325	16 December 2020	16 December 2020	16 December 2020	16 December 2020	23 March 2019	25 March 2018
John Lewis	2011-550	28 January 2020	28 July 2020	29 January 2020	29 January 2020		25 February 2021
Mark Stanfield	2009-337	25 January 2020	25 January 2020	-		5 April 2020	5 April 2020
Mihai Voivod	2016-916	25 February 2021	26 February 2021	29 July 2020	29 July 2020	17 December 2020	17 December 2020
Robert Rusi	2012-656	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017
Scott Chesnut	2012-655	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017
Tom Lyons	2012-721	30 July 2017	24 June 2017	30 July 2017	24 June 2017	30 July 2017	25 June 2017
Thomas Rhodes	2010-408	16 December 2020	16 December 2020	17 December 2020	17 December 2020	14 April 2020	25 March 2018
QSTI Employee	Cert.	Group 4 E	xpirations	Group 5 E	xpirations		
26 April 2016	No.	Certificate	Exam (QI)	Certificate	Exam (QI)		
Andy Vella	2008-247	9 March 2020	9 March 2020		-		
Brett Sherwood							
Carl Slimp	-	-	-	-	-		
ican sinnp	- 2009-362	-	- 22 December 2018	-			
C. David Bagwell	- 2009-362 2005-022	- 22 December 2018	-				
		- 22 December 2018 -	- 22 December 2018	<u> </u>			
C. David Bagwell	2005-022	- 22 December 2018 - 9 February 2019	- 22 December 2018 11 December 2017				
C. David Bagwell Chris Hinson Danny Phipps	2005-022 2014-830	- 22 December 2018 - 9 February 2019 17 March 2021	- 22 December 2018 11 December 2017 9 February 2019		-		
C. David Bagwell Chris Hinson	2005-022 2014-830 2016-915	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021		- - - -		
C. David Bagwell Chris Hinson Danny Phipps David Wagner	2005-022 2014-830 2016-915 2012-658	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017 19 March 2018	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021 3 April 2017		-		
C. David Bagwell Chris Hinson Danny Phipps David Wagner Jason French	2005-022 2014-830 2016-915 2012-658 2013-771	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017		-		
C. David Bagwell Chris Hinson Danny Phipps David Wagner Jason French Joe Heffernan III	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2016	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020				
C. David Bagwell Chris Hinson Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2016 5 April 2020	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021				
C. David Bagwell Chris Hinson Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis Mark Stanfield	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550 2009-337	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2036 5 April 2020 -	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021				
C. David Bagwell Chris Hinson Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis Mark Stanfield Mihai Voivod	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550 2009-337 2016-916	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2036 5 April 2020 - 19 March 2017	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021 5 April 2020	- - - - - - - -			
C. David Bagwell Chris Hinson Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis Mark Stanfield Mihai Voivod Robert Rusi	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550 2009-337 2016-916 2012-656	- 22 December 2018 - 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2036 5 April 2020 - 19 March 2017 19 March 2017	- 22 December 2018 11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021 5 April 2020 - 19 March 2017	- - - - - - - -	- - - - - - - - - - - - -		

#### **QSTI** Certification Expiration Dates

**Red type indicates expired certification or QI as of date above**

**Orange type indicates certification/QI within 6 months of expiration from date above** **Green type indicates certification/QI valid for greater than 6 months from date above**

# SOURCE EVALUATION SOCIETY



## **Qualified Source Testing Individual**

LET IT BE KNOWN THAT

## **JASON T. FRENCH**

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

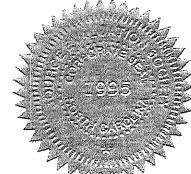
MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS

ISSUED THIS 20TH DAY OF MARCH 2013 AND EFFECTIVE UNTIL MARCH 19TH, 2018

Peter R. Westlin, QSTI/QSTO Review Soard

Peter S. Pakalnis, QSTI/QSTO Review Board

$\bigcap$	' ı/
XIA	quel


C David Ramund OSTICOSTO Review Board

Hara D. Repartillis

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

Glenn C. England, QSTI/QSTO Review Board

APPLICATION NO. 2013-771



SOURCE EVALUATION SOCIETY				
Qualified Source Testing Individual				
JOSEPH M. HEFFERNAN, III				
HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR				
MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS				
ISSUED THIS 17 TH DAY OF DECEMBER 2015 AND EFFECTIVE UNTIL DECEMBER 16 TH , 2020	<u>eleppe</u> ee			
Peter R. Westlin, QSTI/QSTO Review Board A. AMAM Peter S. Pakalnis, QSTI/QSTO Review Board Heren M. Low Devide Board Devide Board Heren M. Low Devide Board Devide				
<u>legelegelegelegelegelegel</u>				

<u>leeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee</u>				
SOURCE EVALUATION SOCIETY Qualified Source Testing Individual				
LET IT BE KNOWN THAT				
MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS				
ISSUED THIS 29 TH DAY OF JULY 2015 AND EFFECTIVE UNTIL JULY 28 TH , 2020				
Image: March	리미미			

### SOURCE EVALUATION SOCIETY **Qualified Source Testing Individual** LET IT BE KNOWN THAT **CHRISOPHER J. HINSON** HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE 2 SAMPLING METHODS ISSUED THIS 6TH DAY OF SEPTEMBER 2013 AND EFFECTIVE UNTIL SEPTEMBER 5TH, 2018 Γ C. David Bagwey, QSTI/QSTO Review Board Peter R. Westlin, QSTI/QSTO Review Board APPLICATION Kajin Mills NO. Karen D. Kajiya-Mills , QSTI/QSTO Review Board 2014-830 Peter S. Pakalnis, QSTI/QSTO Review Board Therese M. Loix hard Glenn C. England, QSTI/QSTO Review Board Theresa Lowe, QSTI/QSTO Review Board ┍╜┍╜┍╜

# SOURCE EVALUATION SOCIETY



# **Qualified Source Testing Individual**

LET IT BE KNOWN THAT

# MIHAI V. VOIVOD

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS

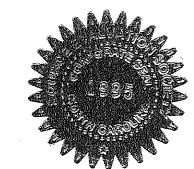
ISSUED THIS 26TH DAY OF FEBRUARY 2016 AND EFFECTIVE UNTIL FEBRUARY 25TH, 2021

Peter R. Westlin, QSTI/QSTO Review Board

Peter S. Pakalnis, QSTUQSTO Review Board Iheren M. Lowe

Theresa Lowe, QSTI/QSTO Review Board

C. David Bagwell, QSTI/QSTO Review Board


en D. Kaja-Hills

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

12 Para

Bruce Randall QSTI/QSTO Review Board

CERTIFICATE NO. 2016-916



From: Theresa Lowe <<u>tf_lowe@yahoo.com</u>> Sent: Wednesday, March 9, 2016 5:34:32 PM To: Brett Sherwood Cc: Gail Westlin Subject: QSTI Score - Brett M. Sherwood

#### THIS EMAIL IS THE OFFICIAL NOTIFICATION OF YOUR SES QUALIFIED SOURCE TESTING INDIVIDUAL OR OBSERVER (QSTI/QSTO) EXAM(S) RESULTS (*Please Print Out for Your Records*)

То:	Brett M. Sherwood	
Employed by:	Montrose Environmental	
Phone:	503-255-5050	
Email:	bsherwood@montrose-env.com	

The Source Evaluation Society, through its contract with Eastern Technical Associates, has received the score of the exam(s) you completed on the date(s) as listed below. You are required to receive a score of 40 to pass an exam. As noted below, a "P" indicates you passed the exam, a "DNP" indicates that you did not pass the exam.

Group #	Exam	Date of Exam	Exam #	Score	Status
1	EPA Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods	2/25/16	12713		Р
1A -	Stack Gas Flow Rate Measurements Sampling Methods				
2	EPA Manual Gaseous Pollutants Source Sampling Methods	2/26/16	12715		Р
3	EPA Gaseous Pollutants Instrumental Methods				
4	EPA Hazardous Metals Measurement Methods				
5	Part 75 CEMS RATA Testing				

NOTE: (1) The ECMPS AETB reporting requirements include a provision for an email address to be noted for the exam provider. Your exam provider is the Source Evaluation Society. Please use the following email address: <u>astiprogram@gmail.com.</u> (2) Your exam score(s), per ASTM D7036-04, will be applicable for five years. <u>You will need to re-</u> <u>take your exam(s) before expiration in order to maintain a current status</u>. You are responsible for keeping track of scheduling for your re-test.

If you passed one or more exams, you are eligible to apply for your SES QSTI/QSTO qualification approval(s). To complete the qualification process, you will need to do the following: For New Applications / Additional Group Certificates / Renewals: Please check the SES Website (www.sesnews.org) under the link for the "SES QSTI/QSTO Program" for directions on how to apply for your certificate or contact Gail Westlin at gail westlin@yahoo.com or Theresa Lowe at tf lowe@yahoo.com.

<u>If a QSTI/QSTO candidate receives notice that he or she did not pass a SES methods group</u> <u>exam(s), the QSTI/QSTO candidate ask the Committee for a review of their exam(s)</u>. Any review request should be sent to gail_westlin@yahoo.com or <u>tf_lowe@yahoo.com</u>. As part of the review, the Committee will provide references to methods for those questions missed.

136

1



Jason French

_____, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that Thave read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

loyee Signature

1-27-15



I <u>CHRIS</u> <u>HINSON</u>, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Employee Signature

14/15



I John Steding Lewis, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

<u>8/10/15</u> Date



The Aff for Such IFF, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Employee Signature



I Breff Sherwood, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

**Employee Signature** 

9/17/15



BRANDON CRAWFORD, as an employee of Montrose Air Quality Services, LLC (MAQS),

sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Employee Signatur

1/21/15



1 Mihai Voivod

_____, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Employee Signature

7/27/15



HAtrick Todd ____, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

**Employee Signature** 

9-115

Date

144



I <u>Paul L. Berce</u>, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Berce

**Employee Signature** 

2/17/16



I <u>Sosh</u> <u>Mushick</u>, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Munut

nployee Signature

2-17-16



Halley 1 Sleight _____, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

**Employee Signature** 

2/25/16



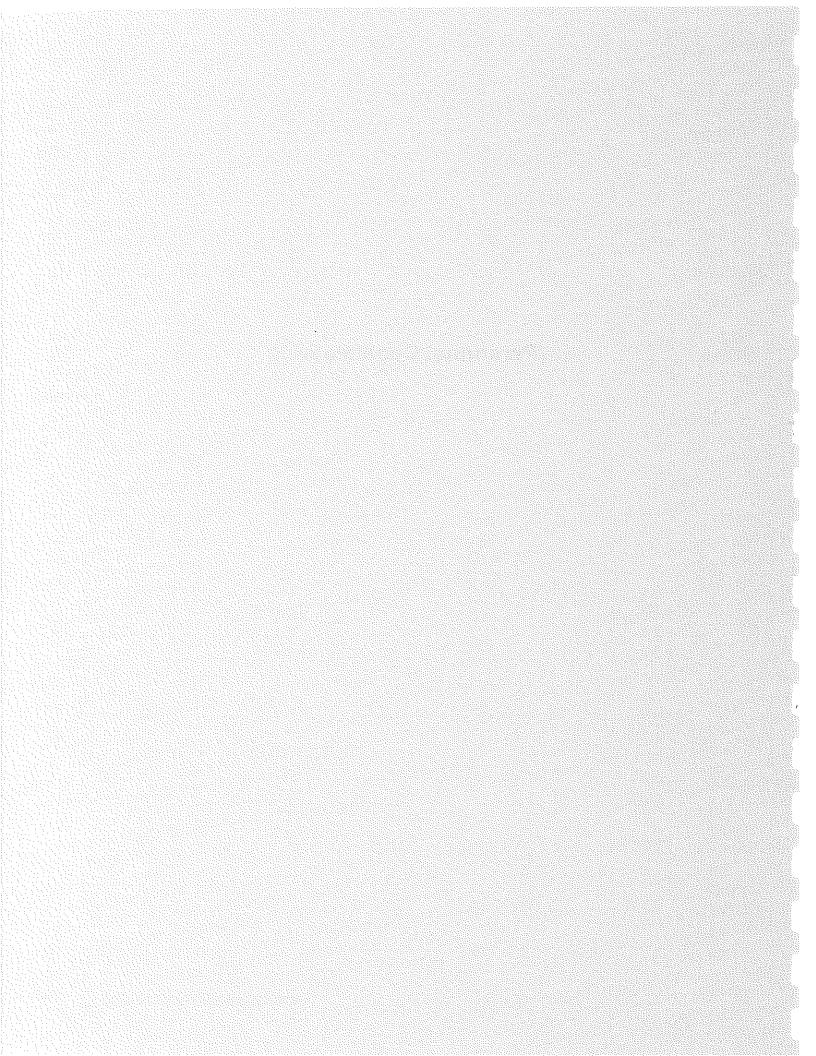
MICHAEL WALLACE

I ______, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Employee Signature

HORIZON ENGINEERING 16-5702




Mauri Fabin

I <u>Material Pattern</u>, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

**Employee Signature** 

### **Personnel Qualifications**

150



#### JASON T. FRENCH, QSTI PROJECT MANAGER

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI) Application #2013-771
  - Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
  - o Group II, Manual Gas Source Sampling Methods
  - o Group III, Gaseous Pollutants Instrumental Methods
  - o Group IV, Hazardous Metals Measurements
- B.S. in Mechanical Engineering from the University of South Florida in Tampa, Florida, 2004
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Certified Visible Emissions Evaluator
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

#### PROFESSIONAL EXPERIENCE

Jason French joined Horizon Engineering in February 2011. His previous experience includes working for 5 years as a staff engineer with an environmental and construction company based in Tallahassee, Florida as well as working for the Florida Department of Environmental Protection. He performs source emission testing and related activities, including writing quotes and source test protocols, field sampling, test equipment maintenance and calibration, equipment preparation, in-field data recording, calculations and training. He is thoroughly trained in all EPA source testing procedures and also experienced using methods from the National Council for Air & Stream Improvement (NCASI), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), American Society for Testing and Materials (ASTM) and many regional (Pacific Northwest and Northern California) agency methods.

**HORIZON ENGINEERING 16-5702** 

#### JOHN S. LEWIS, QSTI (GI, II, IV) FIELD TECHNICIAN II

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
  - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
  - o Group II, Manual Gaseous Pollutants Source Sampling Methods
  - o Group IV, Hazardous Metals Measurements
- B.S. in Social Science and Geography from Frostburg State University, 1998
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### **PROFESSIONAL MEMBERSHIPS**

Source Evaluation Society (SES)

#### **PROFESSIONAL EXPERIENCE**

John Lewis has been with Horizon Engineering since 2008. He brings six years of prior experience working in education, transportation, and roof restoration system installation. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test procedures 2008-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### JOSEPH M. HEFFERNAN III, QSTI (GI-IV) PROJECT MANAGER/TEAM LEADER

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
  - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
  - o Group II, Manual Gas Source Sampling Methods
  - o Group III, Gaseous Pollutants Instrumental Methods
  - o Group IV, Hazardous Metals Measurements
- B.S. in Physical Education from Northern Illinois University, 1999
- Minor in Marketing, with emphasis in Sports Marketing
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### PROFESSIONAL DEVELOPMENT

• Stationary Source Sampling and Analysis for Air Pollutants (SSSAAP) Conference, 2008, 2011

#### PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

#### PROFESSIONAL EXPERIENCE

Joe Heffernan has been with Horizon Engineering since 2004. He brings four prior years experience from another air pollution testing organization in Illinois for a total of more than 12 years of professional experience in the field of air quality. He has performed source tests at hundreds of industrial sources domestically and internationally and has developed the skills necessary to earn the title of Project Manager. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test, procedures 2000-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### Chris Hinson, E.I.T., QSTI (GI-IV) PROJECT MANAGER

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
  - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
  - o Group II, Manual Gas Source Sampling Methods
  - o Group III, Gaseous Pollutants Instrumental Sampling Methods
  - o Group IV, Hazardous Metals Measurement Sampling Methods
- Engineer in Training (E.I.T.) Certification
- Bachelors of Science, Nuclear Engineering, 2012 Purdue University
- Certified Visible Emissions Evaluator
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### **PROFESSIONAL EXPERIENCE**

Chris Hinson has been with Horizon Engineering, LLC since 2014. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, laboratory analysis, test equipment maintenance and calibration, equipment preparation, in-field data recording and calculations. Chris has performed greenhouse gas testing and monitoring at many different facilities. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### MIHAI VOIVOD FIELD TECHNICIAN II

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Individual (QI)
- Group II, Manual Gas Source Sampling Methods, (passed exam, application pending)
- B.S. in Biotechnical and Ecological Systems Engineering from Babes Bolyai University in Cluj, Romania, 2009
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### PROFESSIONAL EXPERIENCE

Mihai Voivod has been with Horizon Engineering since September 2012. He brings 3 years of prior professional experience in the electronics manufacturing industry working for Silicon Forest Electronics in Vancouver, Washington and during an internship at a Romanian laboratory. At Horizon, he performs source emission testing and activities related to source emission testing, including field sampling, test equipment fabrication, maintenance, and calibration, equipment preparation, and in-field data recording. He is being trained to perform all EPA source test procedures and is also learning methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

His experience in the electronics manufacturing industry included operating a selective solder machine and an automated optical inspection (AOI) machine. His education specialty was laboratory sampling analysis and instrumentation operation and troubleshooting.

#### BRANDON CRAWFORD FIELD TECHNICIAN I

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Environmental Science from Oregon State University, Corvallis, Oregon, 2013, Specialized in Environmental Conservation and Sustainability
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- DOT dangerous goods ground shipping training
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### PROFESSIONAL EXPERIENCE

Brandon Crawford has been with Horizon Engineering since June 2014. He brings previous industrial experience as an intern for ATI Albany Operations/Wah Chang. He is being trained to perform source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is being trained in all EPA source test procedures 2002-present. He is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### BRETT SHERWOOD FIELD TECHNICIAN I

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Environmental Science from Washington State University, Pullman, Washington, 2012
- Certificate in Geographic Information Systems, University of Washington, 2013
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### PROFESSIONAL EXPERIENCE

Brett Sherwood has been with Horizon Engineering, LLC since June 2014. His previous experience included survey work performing APS surveying and mapping, working as an environmental technician for the King County Department of Natural Resources and Parks performing surface and groundwater sampling, and working as a technician with the State of Washington Department of Fish and Wildlife ocean sampling program. He is being trained to perform source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is receiving training in all EPA source test procedures from 2002 to present. He is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### PATRICK A. TODD SHOP STEWARD/FIELD TECHNICIAN

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Working towards Associates of Facility Maintenance Technology at Portland Community College
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### **PROFESSIONAL EXPERIENCE**

Patrick Todd has been with Horizon Engineering since 2009. He is the shop steward and equipment maintenance expert. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test procedures 2009-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### Josh Muswieck FIELD TECHNICIAN I

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in in Environmental Science, Oregon Institute of Technology, Klamath Falls, Or 2015
- Opacity & Visual Emissions Certified (EPA Method 9)
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protections, MSDS review, toxic and hazardous substances)
- DOT Medical Card
- Transportation Worker Identification Credential (TWIC) approved
- Respirator Fit-Tested
- Red Cross First Aid & CPR Certified
- Aerial Boom/Scissor Lift Certified Operator

#### PROFESSIONAL EXPERIENCE

Josh Muswieck joined Horizon Engineering in 2016. He has previous work experience as a Biological Science Technician for the USGS and Research Assistant for Oregon Tech Environmental Science Department. He is receiving training in all EPA source test procedures and is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### PAUL LAWAI'A BERCE FIELD TECHNICIAN I

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Environmental Science from Oregon State University, Corvallis, Oregon, 2015
- C-Stop certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- DOT Medical Card
- Transportation Worker Identification Credential (TWIC) approved
- Respirator fit tested
- Lift equipment operator certified

#### **PROFESSIONAL EXPERIENCE**

Paul Berce has been with Montrose Air Quality Service since February 2016. His previous experience included work as an invasive species eradication Field Associate 1 for the Maui Invasive Species Committee, a non-profit, community and county funded organization on Maui, Hawaii. There, he led field crews on eradication and containment of target plant and animal species through survey methodologies and point source treatment. He was trained in the proper identification/handling of chemicals (pesticides and herbicides) and their responsible and proper application. He is receiving training in all EPA source test procedures and is learning to use methods from the National Council for Air &Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### SLEIGHT HALLEY FIELD TECHNICIAN I

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Chemistry from Carroll College, Helena, Montana, 2012
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- DOT Medical Card
- Transportation Worker Identification Credential (TWIC) Approved

#### **PROFESSIONAL EXPERIENCE**

Sleight Halley has been with Horizon Engineering since January, 2016. His previous experience included work as an analytical chemist with Analytical 360 LLC in Yakima, Washington. He is receiving training in all EPA source test procedures and is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### THOMAS A. RHODES, E.I.T., QSTI (GI-IV) DISTRICT MANAGER

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
  - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
  - o Group II, Manual Gaseous Pollutants Source Sampling Methods
  - o Group III, Gaseous Pollutants Instrumental Methods
  - o Group IV, Hazardous Metals Measurements
- Engineer in Training (E.I.T.) Certification, 2001
- B.S. in Chemical Engineering from University of California in Santa Barbara, 2001
- Attended Allan Hancock College in Santa Maria, California, 1996-1998
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- North Slope Training Co-operative class for Unescorted North Slope Safety Orientation (Awareness Level)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### PROFESSIONAL DEVELOPMENT

Stationary Source Sampling and Analysis for Air Pollutants (SSSAAP) Conference, 2008

#### **PROFESSIONAL MEMBERSHIPS**

- Source Evaluation Society (SES)
- American Chemical Society (ACS)

#### **PROFESSIONAL EXPERIENCE**

Thomas Rhodes has been with Horizon Engineering since 2002. He brings three prior years experience as an engineering associate and engineering intern for several companies. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test procedures 2002-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### MICHAEL E. WALLACE, P.E. SENIOR ENGINEER

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Professional Engineer (P.E.) from the State of Oregon, 2002-present
- B.S. in Mechanical Engineering from Oregon State University in Corvallis, Oregon, 1989
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### PROFESSIONAL DEVELOPMENT

 Stationary Source Sampling and Analysis for Air Pollutants (SSSAAP) Conference, approximately 5 years

#### PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

#### PROFESSIONAL EXPERIENCE

Mike Wallace has been with Horizon Engineering since 1991. He is responsible for performing calculations, formulating spreadsheets, quality assurance review, and operating Horizon's gas chromatograph. He is thoroughly trained in all EPA source test procedures 1991-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

#### ANDY VELLA, P.E., QSTI (GI-IV) ENGINEER TECHNICAL WRITER

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Professional Engineer (P.E.) Oregon license #87091PE
- Qualified Source Test Individual (QSTI)
  - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
  - o Group II, Manual Gas Source Sampling Methods
  - o Group III, Gaseous Pollutants Instrumental Sampling Methods
  - o Group IV, Hazardous Metals Measurement Sampling Methods
- B.S. in Chemical Engineering from University of Illinois in Urbana, IL, 2005
- Minor in Mathematics
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

#### **PROFESSIONAL MEMBERSHIPS**

Source Evaluation Society (SES)

#### **PROFESSIONAL EXPERIENCE**

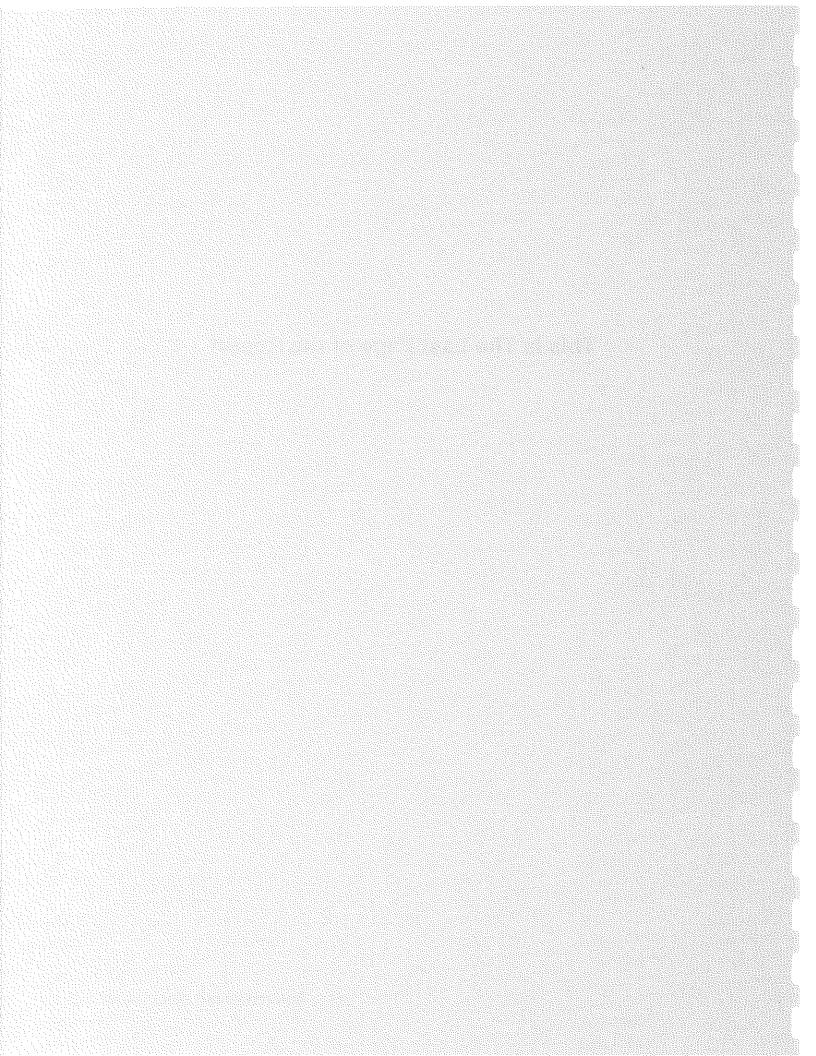
Andras Vella has been with Horizon Engineering since 2011. He brings six prior years experience from Clean Air Engineering in Illinois. His primary duty before joining Horizon was FTIR repair, operation, and data review. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, in-field data recording, data reduction and analysis, quality assurance review and report preparation. He is thoroughly trained in all EPA source test procedures 2005-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

164

#### MAURI FABIO TECHNICAL REPORT WRITER

#### EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.A. in Geology from University of Hawaii at Manoa in Honolulu, HI, 2011
- Certified Visible Emissions Evaluator
- Adult CPR Certified
- Standard First Aid Certified


#### **PROFESSIONAL EXPERIENCE**

Mauri Fabio joined Horizon Engineering in 2016. Her current responsibilities include data reduction and analysis, quality assurance review, and report preparation. She has a year experience with the United Stated Geological Survey (USGS) with laboratory analysis, data collection and processing, testing, field research, report preparation, and mapping preparation. She has experience with laboratory instrumentation such as a scanning electron microscopy (SEM) and energy dispersive x-ray microanalysis (EDS). Field work and data collection in Death Valley and worked with the deformation group at the USGS on Mt. Hood for reconnoitering potential sites for remote instrumentation.

**HORIZON ENGINEERING 16-5702** 

## This is The Last Page of the Report

166

