Upper Klamath Lake Drainage Channel Norphology Assessment

Quality

Upper Klamath Lake Drainage

Slide 1-28

North Fork Sprague River

Channel Morphology Assessment Methodology

Step 1. Stream channel edges are digitized from rectified digital aerial photography at **1:5,000 or less**. These channel boundaries establish the near stream disturbance zone, which is defined for purposes of the TMDL, as the width between shade-producing near-stream vegetation. Where near-stream vegetation is absent, the near-stream boundary is used, defined as downcut stream banks or where the near-stream zone is unsuitable for vegetation growth due to external factors (i.e., roads, railways, buildings, etc.).

Step 2. Sample near stream disturbance zone width at each stream data node using **Ttools**. The sampling algorithm measures the near stream disturbance zone width in the transverse direction relative to the stream aspect.

Step 3. Assess the accuracy of sampled near stream disturbance zone width in estimating ground level bankfull width measurements. Establish statistical limitations for near stream disturbance zone width values when used for estimating bankfull width.

Step 4. **Relate bankfull discharge to drainage area**. Bakke et al. (2000) presents regional curves developed for Klamath Basin and surrounding area stream systems that relate bankfull discharge to drainage area. Two relationships are developed based on drainage area magnitude: less than 100 mi² and greater than 100 mi².

Step 5. **Relate bankfull cross-sectional area to bankfull discharge.** Bakke et al. (2000) also presents a regional curve relationship for bankfull channel cross-sectional area and drainage area that is valid for drainage areas less than 100 mi² (260 km²). While this relationship proves useful is assessing small order streams, it becomes limited since it applies to those with small drainage areas. In attempt to extend the relationship between bankfull channel cross-sectional area and drainage area, DEQ has developed a relationship between bankfull channel cross-sectional area and bankfull discharge. This relationship is based on the Bakke et al. (2000) relationship for bankfull discharge and drainage area less than 100 mi² (260 km²).

Channel Morphology Assessment Methodology (continued)

Step 6. **Relate bankfull cross-sectional area to drainage area.** Substituting the Bakke et al. (2000) regional curve relationships for bankfull discharge into the DEQ derived relationship for bankfull cross-sectional area and bankfull discharge allows bankfull cross-sectional area to be expressed as a function for all drainage areas. The two bankfull discharge regional curve relationships presented by Bakke et al. (2000) produce two relationships for bankfull cross-sectional area: less than (100 mi²) 260 km² and greater than (193 mi²) 500 km². The area between the two curves is simply the highest value of the less than 260 km² relationship extended to the greater than 500 km² relationship. Since the two relationships predict different values for the 260 km² to 500 km² region of the curve, the higher values are used.

Step 7. Methodology Overview

Step 8. **Validate Methodology** - It should be noted that validation of the DEQ derived curve for drainage areas greater than 500 km² is not possible due to lack of data. There is an implicit assumption that the relationship between bankfull discharge and bankfull cross-sectional area is valid throughout the range of drainage areas analyzed by this approach (0 to 10,000 km²).

Step 9. **Relate Bankfull Width Values to Stream Type, Width to Depth and Drainage Area.** Bankfull width can be estimated as a function of width to depth ratio and cross-sectional area. Using this relationship for bankfull width, it is possible to relate bankfull width to drainage area and width to depth ratios. This relationship is used for a best fit to measured NSDZ width data. Drainage areas for all stream data nodes are calculated from 30-meter digital elevation model data. Width to depth ratios are the variable used as the basis for the best fit relationship. All derived width to depth ratios are within published ranges for level I stream types (Rosgen, 1996).

Step 10. **Potential bankfull width is developed as a function of stream type, drainage area and width to depth ratios**. Using the regional curve relationships for bankfull width as a threshold condition, departures from this threshold become evident. Potential bankfull widths are assumed to be those that are at or below the regional curve threshold for the appropriate stream type.

<u>Step 1</u> Digitize Channel Edge Polylines at 1:5,000

ODEQ refers to these stream edge boundaries as the near stream disturbance zone width (NSDZ).

> Digitize polyline for both visible stream channel edges. These boundaries designate the near stream disturbance zone width (NSDZ).

<u>Step 3</u> Assess accuracy of ODEQ NSDZ width sampled data compared to USFS bankfull width ground level measurements.

In general, the NSDZ width serves as an accurate estimate of bankfull widths. When compared to ground level bank full width data, NSDZ width samples have a correlation coefficient of 0.94, a standard error or 5.2 feet and an average absolute deviation of 4.3 feet.

NSDZ width samples can be used to estimate bankfull width provided that statistical accuracy limitations are acknowledged.

Step 3 (continued) Assess accuracy of ODEQ NSDZ width sampled data compared to USFS bankfull width ground level measurements.

This methodology may over estimate bankfull widths for narrow stream channels and under estimate bankfull channel width for wider stream channels. Sources of error include limited by aerial photo resolution, plan view line of sight to the stream channel boundaries and the clarity of the channel edge (i.e. there must be a visibly defined channel boundary). There is an obvious bias to the methodology towards features visible in plan view. Vertical features (i.e. channel incisions, cut banks, flood plain relief, etc.) can be difficult to distinguish for aerial photos.

<u>Step 4</u> Relate bankfull discharge to drainage area		
Bakke et al. (2000) presents regional curves developed for Klamath Basin and surrounding area stream systems that relate bankfull discharge to drainage area. Two relationships are developed based on drainage area magnitude: less than 100 mi ² and greater than 100 mi ² .		
Metric Units	English Units	
A _{bf} : Bankfull Cross-Sectional Area (m ²) DA: Drainage Area (km ²) Q _{bf} : Bankfull Discharge (m ³ /s)	A _{bf} : Bankfull Cross-Sectional Area (ft ²) DA: Drainage Area (mi ²) Q _{bf} : Bankfull Discharge (ft ³ /s)	
Bankfull Discharge as a Function of Drainage Area,	Bankfull Discharge as a Function of Drainage Area,	
For all DA < 260 km^2	For all DA < 100 mi ²	
$Q_{bf} = 0.0272 DA^{1.0740} (R^2 = 0.91)$	$Q_{bf} = 2.6694 DA^{1.0740}$ (R ² = 0.91)	
For all DA > 260 km ²	For all DA > 100 mi ²	
$Q_{bf} = 0.1090 DA^{0.7400} (R^2 > 0.99)$	$Q_{bf} = 7.7843 DA^{0.7400}$ (R ² > 0.99)	
(Bakke et al., 2000)	(DEQ analysis)	

Slide 9-28

Step 5 Relate bankfull cross-sectional area to bankfull discharge

Bakke et al. (2000) also presents a regional curve relationship for bankfull channel crosssectional area and drainage area that is valid for drainage areas less than 100 mi² (260 km²). While this relationship proves useful is assessing small order streams, it becomes limited since it applies to those with small drainage areas. In attempt to extend the relationship between bankfull channel cross-sectional area and drainage area, DEQ has developed a relationship between bankfull channel cross-sectional area and bankfull discharge. This relationship is based on the Bakke et al. (2000) relationship for bankfull discharge and drainage area less than 100 mi² (260 km²).

Metric Units	English Units
A _{bf} : Bankfull Cross-Sectional Area (m ²) DA: Drainage Area (km ²) Q _{bf} : Bankfull Discharge (m ³ /s)	A _{bf} : Bankfull Cross-Sectional Area (ft ²) DA: Drainage Area (mi ²) Q _{bf} : Bankfull Discharge (ft ³ /s)
Bankfull Cross-Sectional Area as a Function of Bankfull Discharge,	Bankfull Cross-Sectional Area as a Function of Bankfull Discharge,
$A_{bf} = 1.5009 Q_{bf}^{0.7792}$	$A_{bf} = 1.0050 \cdot Q_{bf}^{0.7792}$
(DEQ analysis)	(DEQ analysis)

Step 5 (continued) Relate bankfull cross-sectional area to bankfull discharge

Slide 11-28

Step 6 Relate bankfull cross-sectional area to drainage area

Substituting the Bakke et al. regional curve relationships for bankfull discharge into the DEQ derived relationship for bankfull cross-sectional area and bankfull discharge allows bankfull cross-sectional area to be expressed as a function for all drainage areas.

The two bankfull discharge regional curve relationships presented by Bakke et al. are accounted for in the figure below and produce two relationships for bankfull cross-sectional area: less than (100 mi²) 260 km² and greater than (193 mi²) 500 km². The area between the two curves is simply the highest value of the less than 260 km² relationship extended to the greater than 500 km² relationship. Since the two relationships predict different values for the 260 km² to 500 km² region of the curve, the higher values are used.

Bankfull Cross-Sectional Area v. Drainage Area

Regional curve for bankfull cross-sectional area and drainage area - Klamath Basin and

Slide 12-28

Step 7 Methodology Overview

Metric Units English Units A_{bf}: Bankfull Cross-Sectional Area (ft²) A_{bf}: Bankfull Cross-Sectional Area (m²) DA: Drainage Area (km²) DA: Drainage Area (mi²) Q_{bf}: Bankfull Discharge (ft³/s) Q_{bf} : Bankfull Discharge (m³/s) Step 4 Step 4 Bankfull Discharge as a Function of Drainage Bankfull Discharge as a Function of Drainage Area. Area. For all DA < 260 km^2 For all DA < 100 mi^2 $Q_{bf} = 0.0272 \cdot DA^{1.0740}$ (R² = 0.91) $Q_{bf} = 2.6694 DA^{1.0740} (R^2 = 0.91)$ For all DA > 260 km² For all DA > 100 mi^2 $Q_{bf} = 0.1090 DA^{0.7400} (R^2 > 0.99)$ $Q_{bf} = 7.7843 DA^{0.7400} (R^2 > 0.99)$ (Bakke et al., 2000) (DEQ analysis) Step 5 Step 5 Bankfull Cross-Sectional Area as a Function of Bankfull Cross-Sectional Area as a Function of Bankfull Discharge. Bankfull Discharge. $A_{bf} = 1.5009 Q_{bf}^{0.7792}$ $A_{bf} = 1.0050 Q_{bf}^{0.7792}$ (DEQ analysis) (DEQ analysis) Step 6 Step 6 Bankfull Cross-Sectional Area as a Function of Bankfull Cross-Sectional Area as a Function of Drainage Area, Drainage Area, For all DA < 260 km^2 For all DA < 100 mi^2 $A_{bf} = 2.1603 DA^{0.8369}$ (R² = 0.92) $A_{bf} = 1.5009 (0.0272 DA^{1.0740})^{0.7792}$ $DA < 100 \text{ mi}^2$ to 193 mi² Which simplifies to, $A_{\rm bf} = 0.0905 \, DA^{0.8369} \ (R^2 = 0.92)$ Regression Equations Predict Differing Values. Use higher range of values. $DA < 260 \text{ km}^2$ to 500 km^2 $A_{bf} = 102.3 \text{ ft}^2$ Regression Equations Predict Differing DA < 193 mi² Values. Use higher range of values. $A_{bf} = 4.9731 DA^{0.5766}$ $A_{\rm bf} = 9.5 \, {\rm m}^2$ $DA < 500 \text{ km}^2$ (DEQ analysis) $A_{bf} = 1.5009 (0.1090 DA^{0.740})^{0.7792}$ Which simplifies to, $A_{bf} = 0.2669 \text{ DA}^{0.5766}$ (DEQ analysis)

Slide 13-28

<u>Step 8</u> Validate Methodology

The accuracy of predicting the bankfull cross-sectional area as a function of drainage area is presented in the figure below. It should be noted that validation of the DEQ derived curve for drainage areas greater than 500 km² is not possible due to lack of data. There is an implicit assumption that the relationship between bankfull discharge and bankfull cross-sectional area is valid throughout the range of drainage areas analyzed by this approach (0 to 10,000 km²).

Slide 14-28

<u>Step 9</u>

Relate Bankfull Width Values to Stream Type, Width to Depth and Drainage Area

Bankfull width can be estimated as a function of width to depth ratio and crosssectional area.

$$BFW = \sqrt{W : D \cdot A_{bf}}$$
(Rosgen, 1996)

Using this relationship for bankfull width, it is possible to relate bankfull width to drainage area and width to depth	Level I Stream Type	Width to Depth
ratios. This relationship is used for a best fit to measured	A	7.9
NSDZ width data. Drainage areas for all stream data	В	18.6
nodes are calculated from 30-meter digital elevation model	С	29.8
data Width to depth ratios are the variable used as the	D	N/A
basis for the best fit relationship All derived width to	E	7.1
depth ratios are within published ranges for level L stream	F	27.6
	G	8.0
types (Rosgen, 1996).		

Slide 16-28

Step 9 (continued) Relate Bankfull Width Values to Stream Type, Width to Depth and Drainage Area

Slide 17-28

<u>Step 10</u> Develop Potential Channel Width as a Function of Stream Type, Width to Depth Ratios and Drainage Area

Rosgen (1996) outlines a methodology for analyzing channel evolution. Drawing from this methodology ODEQ estimated the potential for change with stream channel types. A, B, C and E stream types are considered in a stable condition with little chance for change to another stream type. D channels are braided, resulting from natural and/or human disturbance process. In some cases D channels can change to C or E stream types provided sediment supply and stream morphology allows. All F stream types are considered below potential and changed to either C or E types, depending on the contributing drainage area.

Current	Potential
Condition	Condition
Α	Α
В	В
С	C or E
D	C, D or E
E	E
F	C or E

Using regional curve relationships for bankfull width (**developed in Step 9**) as a threshold condition, departures above this threshold become evident. Potential bankfull widths are developed by simply targeting bankfull width values at or below the regional curve threshold for the appropriate stream type. In essence the potential stream type and width to depth ratio is targeted.

Slide 18-28

Williamson River Drainage Area

Williamson River

	Level I Stream Type	Width to Depth
$BFW = \sqrt{W : D \cdot A_{bf}}$ (Rosgen, 1996)	А	7.9
	В	18.6
Where	С	29.8
W:D Estimated in Stop 9	D	N/A
W.D - Estimated in Step 9	E	7.1
X _{Area} - Estimated in Step 6	F	27.6
	G	8.0

ea

Williamson River Level I Rosgen Stream Types

Slide 20-28

South Fork Sprague River

	Level I Stream Type	Width to Depth
$BFW = \sqrt{W : D \cdot A_{bf}} \qquad (Rosgen, 1996)$	A	7.9
	В	18.6
Where	С	29.8
W:D - Estimated in Sten 9	D	N/A
X _{Area} - Estimated in Step 6	E	7.1
	F	27.6
	G	8.0

South Fork Sprague River Level I Rosgen Stream Types

North Fork Sprague River

	Level I Stream Type	Width to Depth
$BFW = \sqrt{W : D \cdot A_{bf}} \qquad (Rosgen, 1996)$	A	7.9
	В	18.6
Where.	С	29.8
W:D - Estimated in Step 9 X _{Area} - Estimated in Step 6	D	N/A
	E	7.1
	F	27.6
	G	8.0

North Fork Sprague River Level I Rosgen Stream Types

North Fork Sprague River Current and Potential Bankfull Width Estimates

Slide 22-28

Slide 23-28

Slide 24-28

Slide 27-28

Topographic Shade Angles

Slide 28-28