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Channel Morphology Assessment Methodology

Step 1.  Stream channel edges are digitized from rectified digital aerial photography at
1:5,000 or less.  These channel boundaries establish the near stream disturbance zone,
which is defined for purposes of the TMDL, as the width between shade-producing near-
stream vegetation.  Where near-stream vegetation is absent, the near-stream boundary is
used, defined as downcut stream banks or where the near-stream zone is unsuitable for
vegetation growth due to external factors (i.e., roads, railways, buildings, etc.).
Step 2.  Sample near stream disturbance zone width at each stream data node using
Ttools.  The sampling algorithm measures the near stream disturbance zone width in the
transverse direction relative to the stream aspect.
Step 3.  Assess the accuracy of sampled near stream disturbance zone width in
estimating ground level bankfull width measurements.  Establish statistical limitations for
near stream disturbance zone width values when used for estimating bankfull width.
Step 4.  Relate bankfull discharge to drainage area. Bakke et al. (2000) presents regional
curves developed for Klamath Basin and surrounding area stream systems that relate bankfull
discharge to drainage area.  Two relationships are developed based on drainage area
magnitude: less than 100 mi2 and greater than 100 mi2.
Step 5. Relate bankfull cross-sectional area to bankfull discharge.  Bakke et al. (2000)
also presents a regional curve relationship for bankfull channel cross-sectional area and
drainage area that is valid for drainage areas less than 100 mi2 (260 km2 ).  While this
relationship proves useful is assessing small order streams, it becomes limited since it
applies to those with small drainage areas.  In attempt to extend the relationship between
bankfull channel cross-sectional area and drainage area, DEQ has developed a relationship
between bankfull channel cross-sectional area and bankfull discharge.  This relationship is
based on the Bakke et al. (2000) relationship for bankfull discharge and drainage area less
than 100 mi2 (260 km2).
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Channel Morphology Assessment Methodology (continued)

Step 6.  Relate bankfull cross-sectional area to drainage area.  Substituting the Bakke et al. (2000)
regional curve relationships for bankfull discharge into the DEQ derived relationship for bankfull cross-
sectional area and bankfull discharge allows bankfull cross-sectional area to be expressed as a
function for all drainage areas.  The two bankfull discharge regional curve relationships presented by
Bakke et al. (2000) produce two relationships for bankfull cross-sectional area: less than (100 mi2) 260
km2 and greater than (193 mi2) 500 km2.  The area between the two curves is simply the highest value
of the less than 260 km2 relationship extended to the greater than 500 km2 relationship.  Since the two
relationships predict different values for the 260 km2 to 500 km2 region of the curve, the higher values
are used.
Step 7.  Methodology Overview
Step 8.  Validate Methodology - It should be noted that validation of the DEQ derived curve for
drainage areas greater than 500 km2 is not possible due to lack of data.  There is an implicit
assumption that the relationship between bankfull discharge and bankfull cross-sectional area is valid
throughout the range of drainage areas analyzed by this approach (0 to 10,000 km2).
Step 9.  Relate Bankfull Width Values to Stream Type, Width to Depth and Drainage Area.
Bankfull width can be estimated as a function of width to depth ratio and cross-sectional area.  Using
this relationship for bankfull width, it is possible to relate bankfull width to drainage area and width to
depth ratios.  This relationship is used for a best fit to measured NSDZ width data.  Drainage areas for
all stream data nodes are calculated from 30-meter digital elevation model data.  Width to depth ratios
are the variable used as the basis for the best fit relationship.   All derived width to depth ratios are
within published ranges for level I stream types (Rosgen, 1996).
Step 10.  Potential bankfull width is developed as a function of stream type, drainage area and
width to depth ratios.  Using the regional curve relationships for bankfull width as a threshold
condition, departures from this threshold become evident.  Potential bankfull widths are assumed to be
those that are at or below the regional curve threshold for the appropriate stream type.
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Step 1
Digitize Channel Edge

Polylines
at 1:5,000

ODEQ refers to these
stream edge

boundaries as the
near stream

disturbance zone
width (NSDZ).

Digitize polyline for both
visible stream channel

edges.  These boundaries
designate the near

stream disturbance zone
width (NSDZ).
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Step 2
Sample NSDZ polylines at every stream data

node (i.e. every 100 feet).  The sampling
algorithm measures the distance in the

transverse direction relative to stream aspect.
By measuring the distance between one
mapped stream bank edge to the other

stream bank edge, an estimate
of channel width is sampled

at a high resolution.
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In general, the NSDZ width
serves as an accurate

estimate of bankfull widths.
When compared to ground
level bank full width data,

NSDZ width samples have a
correlation coefficient of 0.94,

a standard error or 5.2 feet
and an average absolute

deviation of 4.3 feet.

NSDZ width samples can be
used to estimate bankfull

width provided that statistical
accuracy limitations are

acknowledged.

Step 3
Assess accuracy of ODEQ NSDZ width sampled data compared to USFS bankfull width

ground level measurements.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
BFW - USFS Ground Level 

Measured Bankfull Width (feet)

NS
DZ

 - 
DE

Q
 G

IS
 S

am
pl

ed
 N

ea
r S

tre
am

 D
is

tu
rb

an
ce

 Z
on

e 
W

id
th

 
(fe

et
)

1:1 Linen = 48, R2 = 0.94
Se = 1.6 m (5.2 ft)
|Dev| = 1.3 m (4.3 ft)
F Statistic  = 48
Significant at 0.05

Channel Width Comparison - GIS Sampled
NSDZ v. Ground Level BFW Measurements
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This methodology may over
estimate bankfull widths for
narrow stream channels and

under estimate bankfull
channel width for wider stream

channels.  Sources of error
include limited by aerial photo

resolution, plan view line of
sight to the stream channel

boundaries and the clarity of
the channel edge (i.e. there

must be a visibly defined
channel boundary).  There is

an obvious bias to the
methodology towards features
visible in plan view.  Vertical

features (i.e. channel
incisions, cut banks, flood
plain relief, etc.) can be

difficult to distinguish for aerial
photos.

Channel Width Residuals - GIS Sampled
NSDZ v. Ground Level BFW Measurements
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Step 3 (continued)
Assess accuracy of ODEQ NSDZ width sampled data compared to USFS bankfull width

ground level measurements.
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Step 4
Relate bankfull discharge to drainage area

Bakke et al. (2000) presents regional curves developed for Klamath Basin and surrounding
area stream systems that relate bankfull discharge to drainage area.  Two relationships are
developed based on drainage area magnitude: less than 100 mi2 and greater than 100 mi2.

Metric Units

Abf: Bankfull Cross-Sectional Area (m2)
DA: Drainage Area (km2)
Qbf: Bankfull Discharge (m3/s)

English Units

Abf: Bankfull Cross-Sectional Area (ft2)
DA: Drainage Area (mi2)
Qbf: Bankfull Discharge (ft3/s)

Bankfull Discharge as a Function of Drainage
Area,

For all DA < 260 km2

Qbf = 0.0272.DA1.0740  (R2 = 0.91)

For all DA > 260 km2

Qbf = 0.1090.DA0.7400  (R2 > 0.99)

(Bakke et al., 2000)

Bankfull Discharge as a Function of Drainage
Area,

For all DA < 100 mi2

Qbf = 2.6694.DA1.0740  (R2 = 0.91)

For all DA > 100 mi2

Qbf = 7.7843.DA0.7400  (R2 > 0.99)

(DEQ analysis)
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Bankfull Discharge v. Drainage Area
Regional curves for bankfull discharge and drainage area – Klamath Basin and surround area

stream systems (data from Bakke et al., 2000).
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For DA < 260 km2 (100 mi2)
Metric Units

Qbf = 0.0272.DA1.0740

English Units
Qbf = 2.6694.DA1.0740

n = 21, R2 = 0.91
Se = 0.1600 m3/s (5.65 ft3/s)

F Statistic  = 213
Significant at 0.05

For DA > 260 km2 (100 mi2)
Metric Units

Qbf = 0.1090.DA0.7400

English Units
Qbf = 7.7843.DA0.7400

n = 5, R2 > 0.99
Se = 0.0179 m3/s (0.63 ft3/s)

F Statistic  = 2090
Significant at 0.05

Step 4 (continued)
Relate bankfull discharge to drainage area
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Step 5
Relate bankfull cross-sectional area to bankfull discharge

Bakke et al. (2000) also presents a regional curve relationship for bankfull channel cross-
sectional area and drainage area that is valid for drainage areas less than 100 mi2 (260 km2 ).

While this relationship proves useful is assessing small order streams, it becomes limited since
it applies to those with small drainage areas.  In attempt to extend the relationship between
bankfull channel cross-sectional area and drainage area, DEQ has developed a relationship
between bankfull channel cross-sectional area and bankfull discharge.  This relationship is
based on the Bakke et al. (2000) relationship for bankfull discharge and drainage area less

than 100 mi2 (260 km2).

Metric Units

Abf: Bankfull Cross-Sectional Area (m2)
DA: Drainage Area (km2)
Qbf: Bankfull Discharge (m3/s)

English Units

Abf: Bankfull Cross-Sectional Area (ft2)
DA: Drainage Area (mi2)
Qbf: Bankfull Discharge (ft3/s)

Bankfull Cross-Sectional Area as a Function of
Bankfull Discharge,

Abf = 1.5009.Qbf
0.7792

(DEQ analysis)

Bankfull Cross-Sectional Area as a Function of
Bankfull Discharge,

Abf = 1.0050.Qbf
0.7792

(DEQ analysis)
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Bankfull Cross-Sectional Area v. Bankfull Discharge
Relationship between bankfull cross-sectional area and bankfull discharge – Klamath Basin

and surround area stream systems (data from Bakke et al., 2000, DEQ analysis)

1

10

100

1,000

1 10 100 1,000

Bankfull Flow Rate - ft3/s
(Qbf)

B
an

kf
ul

l C
ro

ss
-S

ec
tio

na
l A

re
a 

- f
t2

(A
bf

)

For DA < 260 km2 (100 mi2)

Metric Units
Abf = 1.5009.DA0.7792

English Units
Abf = 1.0050.DA0.7792

n = 21, R2 = 0.92
Se = 0.55 m2 (5.92 ft2)

F Statistic  = 231
Significant at 0.05

Step 5 (continued)
Relate bankfull cross-sectional area to bankfull discharge
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Bankfull Cross-Sectional Area v. Drainage Area
Regional curve for bankfull cross-sectional area and drainage area – Klamath Basin and

surround area stream systems (data from Bakke et al., 2000, DEQ analysis)
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For DA < 260 km2 (100 mi2)
Metric Units

Abf = 0.0905.DA0.8369

English Units
Abf = 2.1603.DA0.8369

n = 21, R2 = 0.80
Se = 0.19 m2 (2.05 ft2)

F Statistic  = 80
Significant at 0.05

For DA 260 km2 (100 mi2) to
500 km2 (193 mi2)

Abf = 9.5 m2 (102.3 ft2)

For DA > 500 km2 (193 mi2)
Metric Units

Abf = 0.2669.DA0.5766

English Units
Abf = 4.9731.DA0.5766

Step 6
Relate bankfull cross-sectional area to drainage area

Substituting the Bakke et al. regional curve relationships for bankfull discharge into the DEQ derived relationship for bankfull cross-sectional
area and bankfull discharge allows bankfull cross-sectional area to be expressed as a function for all drainage areas.

The two bankfull discharge regional curve relationships presented by Bakke et al. are accounted for in the figure below and produce two
relationships for bankfull cross-sectional area: less than (100 mi2) 260 km2 and greater than (193 mi2) 500 km2.  The area between the two
curves is simply the highest value of the less than 260 km2 relationship extended to the greater than 500 km2 relationship.  Since the two

relationships predict different values for the 260 km2 to 500 km2 region of the curve, the higher values are used.
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Step 7
Methodology Overview

Metric Units

Abf: Bankfull Cross-Sectional Area (m2)
DA: Drainage Area (km2)
Qbf: Bankfull Discharge (m3/s)

English Units

Abf: Bankfull Cross-Sectional Area (ft2)
DA: Drainage Area (mi2)
Qbf: Bankfull Discharge (ft3/s)

Step 4
Bankfull Discharge as a Function of Drainage
Area,

For all DA < 260 km2

Qbf = 0.0272.DA1.0740  (R2 = 0.91)

For all DA > 260 km2

Qbf = 0.1090.DA0.7400  (R2 > 0.99)

(Bakke et al., 2000)

Step 4
Bankfull Discharge as a Function of Drainage
Area,

For all DA < 100 mi2

Qbf = 2.6694.DA1.0740  (R2 = 0.91)

For all DA > 100 mi2

Qbf = 7.7843.DA0.7400  (R2 > 0.99)

(DEQ analysis)

Step 5
Bankfull Cross-Sectional Area as a Function of
Bankfull Discharge,

Abf = 1.5009.Qbf
0.7792

(DEQ analysis)

Step 5
Bankfull Cross-Sectional Area as a Function of
Bankfull Discharge,

Abf = 1.0050.Qbf
0.7792

(DEQ analysis)

Step 6
Bankfull Cross-Sectional Area as a Function of
Drainage Area,

For all DA < 260 km2

Abf = 1.5009.(0.0272.DA1.0740)0.7792

Which simplifies to,

Abf = 0.0905.DA0.8369  (R2 = 0.92)

DA < 260 km2 to 500 km2

Regression Equations Predict Differing
Values.  Use higher range of values.

Abf = 9.5 m2

DA < 500 km2

Abf = 1.5009.(0.1090.DA0.740)0.7792

Which simplifies to,

Abf = 0.2669.DA0.5766

(DEQ analysis)

Step 6
Bankfull Cross-Sectional Area as a Function of
Drainage Area,

For all DA < 100 mi2

Abf = 2.1603.DA0.8369  (R2 = 0.92)

DA < 100 mi2 to 193 mi2

Regression Equations Predict Differing
Values.  Use higher range of values.

Abf = 102.3 ft2

DA < 193 mi2

Abf = 4.9731.DA0.5766

(DEQ analysis)
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Step 8
Validate Methodology

The accuracy of predicting the bankfull cross-sectional area as a function of drainage area is presented in the
figure below.  It should be noted that validation of the DEQ derived curve for drainage areas greater than 500
km2 is not possible due to lack of data.  There is an implicit assumption that the relationship between bankfull
discharge and bankfull cross-sectional area is valid throughout the range of drainage areas analyzed by this

approach (0 to 10,000 km2).
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Apredicted = 0.9353. Ameasured

n = 21, R2 = 0.92
Se = 0.98 m2 (10.55 ft2)

F Statistic  = 215
Significant at 0.05
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Cross-Sectional Area Validation
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Channel cross-sectional area - Measured vs. precited – Klamath Basin and surrounding area
stream systems (data from Bakke et al., 2000, DEQ analysis).
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Step 9
Relate Bankfull Width Values to Stream Type, Width to Depth and Drainage Area

Bankfull width can be estimated as a function of width to depth ratio and cross-
sectional area.

bfAD:WBFW ⋅=

Level I
Stream Type

Width to
Depth

A 7.9
B 18.6
C 29.8
D N/A
E 7.1
F 27.6
G 8.0

(Rosgen, 1996)

Using this relationship for bankfull width, it is possible to
relate bankfull width to drainage area and width to depth
ratios.  This relationship is used for a best fit to measured
NSDZ width data.  Drainage areas for all stream data
nodes are calculated from 30-meter digital elevation model
data.  Width to depth ratios are the variable used as the
basis for the best fit relationship.   All derived width to
depth ratios are within published ranges for level I stream
types (Rosgen, 1996).
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Step 9 (continued)
Relate Bankfull Width Values to Stream Type, Width to Depth and Drainage Area
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Bankfull Width as a Function of Width to Depth Ratio and Drainage Area
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Step 9 (continued)
Relate Bankfull Width Values to Stream Type, Width to Depth and Drainage Area
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B Channel Regression
Analysis for

Average W:D = 18.6

n = 4,032, R2 = 0.60
Se = 7.8 m (25.5 ft)
F Statistic  = 146
Significant at 0.05
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C Channel Regression
Analysis for

Average W:D = 29.8

n = 10,547, R2 = 0.54
Se = 12.3 m (40.4 ft)

F Statistic  = 581
Significant at 0.05
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E Channel Regression
Analysis for

Average W:D = 7.1

n = 56, R2 = 0.20
Se = 10.0 m (32.8 ft)

F Statistic  = 74
Not Significant at 0.05
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Estimated BFW
F Channel NSDZ Width

F Channel Regression
Analysis for

Average W:D = 27.6

n = 7,373, R2 = 0.55
Se = 12.3 m (40.4 ft)

F Statistic  = 883
Significant at 0.05
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Step 10
Develop Potential Channel Width as a Function of Stream

Type, Width to Depth Ratios and Drainage Area

Rosgen (1996) outlines a methodology for analyzing channel
evolution.  Drawing from this methodology ODEQ estimated the
potential for change with stream channel types.  A, B, C and E

stream types are considered in a stable condition with little chance
for change to another stream type.   D channels are braided,

resulting from natural and/or human disturbance process.  In some
cases D channels can change to C or E stream types provided
sediment supply and stream morphology allows.  All F stream

types are considered below potential and changed to either C or E
types, depending on the contributing drainage area.

Using regional curve relationships for bankfull width (developed in
Step 9) as a threshold condition, departures above this threshold

become evident.  Potential bankfull widths are developed by simply
targeting bankfull width values at or below the regional curve

threshold for the appropriate stream type.  In essence the potential
stream type and width to depth ratio is targeted.
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Upper Klamath Lake Drainage Channel
Morphology Assessment

Methodology
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bfAD:WBFW ⋅= (Rosgen, 1996)

Level I
Stream Type

Width to
Depth

A 7.9
B 18.6
C 29.8
D N/A
E 7.1
F 27.6
G 8.0

Where,
     W:D - Estimated in Step 9
     XArea - Estimated in Step 6

Williamson River
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bfAD:WBFW ⋅= (Rosgen, 1996)

Level I
Stream Type

Width to
Depth

A 7.9
B 18.6
C 29.8
D N/A
E 7.1
F 27.6
G 8.0

Where,
     W:D - Estimated in Step 9
     XArea - Estimated in Step 6

South Fork Sprague River
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bfAD:WBFW ⋅= (Rosgen, 1996)

Level I
Stream Type

Width to
Depth

A 7.9
B 18.6
C 29.8
D N/A
E 7.1
F 27.6
G 8.0

Where,
     W:D - Estimated in Step 9
     XArea - Estimated in Step 6

North Fork Sprague River

North Fork Sprague River
Level I Rosgen Stream Types
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bfAD:WBFW ⋅= (Rosgen, 1996)
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bfAD:WBFW ⋅= (Rosgen, 1996)

Level I
Stream Type

Width to
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