Appendix C:

Reasonable Potential Analyses and Wasteload Allocations

	This page intentionally le	eft blank	
	a fada a a a a a		
State of Oregon Department of Env	vironmental Quality		

Western Hood Subbasin Temperature TMDL: 2018 Revision

Table C-1. Input parameters and results of Reasonable Potential Analysis for the Mount Hood Meadows Wastewater Treatment Plant.

Variables indicated in the second column of this table refer to variables used in Equations 3-6 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the most stringent WLA which apply during the critical period (included in Table 13 of the TMDL document).

Mount Hood Meadows WWTP: East F	Critical period May 1-September 30 Sept 30														
	Variable	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec		
			Winter C	Operation	ns			Summe	r Operat	ions	•	Winter C	perations		
Fish Use Designation						Salmo	n & Trou	ıt Rearir	ng & Mig	ration					
Critical period							May 1	-Septer	mber 30					June 15 - Sept 30	
Applicable Temperature Criterion (°C)	T _C		1	8.0				18.0				18.0		17.8	
Maximum Effluent Temp (°C)	T _E *	13.9	14.1	13.9	14.3							14.3			
Minimum Stream Flow (cfs)	Q _R *	5.6	5.8	5.6	6.5	9.4	19.4	13.9	6.7	6.9	6.8	7.1	7.2	5 ⁺	
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E		0.0	0375				0.0187	7	0.0187	0.0	375	0.0187		
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E		C	0.06				0.03			0.03	0	.06		
Dilution Ratio with 100% of stream flow	S**	97	101	97	113	326	671	481	232	239	236	123	125		
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A			0.18			N/A	N/A	N/A		
Calculated Change in River Temperature under Current Operations (°C)	ΔT _R **	-0.04	-0.04	-0.04	-0.03	-0.01	0.00	0.00	0.01	0.00	0.00	-0.03	-0.03		
Current Thermal Load (gcals/day)	CL**	-0.6	-0.6	-0.6	-0.5	-0.2	-0.2	0.0	0.1	0.0	-0.1	-0.5	-0.5		
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A					3.1	N/A	N/A	N/A	0.45	
Load reduction needed to meet WLA (gcals/day, %)		N/A	N/A	N/A	N/A						N/A	N/A	N/A		
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A	N/A	N/A	N/A OAR 340-041-0053(2)(d) # N/A N/A									

^{*} Measured data

^{**} Calculated data

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table.

[#] The calculated maximum allowable effluent temperature under allocated conditions is greater than is physically possible to generate at the facility (>59.8*C). The calculated value of T_{WLA} does not allow a facility to discharge effluent at these high temperatures. T_{WLA} needs to comply with thermal plume limitations in this OAR.

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

Table C-2. Input parameters and results of Reasonable Potential Analysis for the Diamond Fruit Growers Parkdale facility.

Variables indicated in the second column of this table refer to variables used in Equations 3-7 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the WLA which apply during the critical period (included in Table 13 of the TMDL document).

Diamond-Parkdale facility: ditch as receiving stream			
	Variable	Design flows	2001 TMDL++
Fish Use Designation		Salmon & Trout Rearing & Migration	
Critical period		May 1-September 30	June 1-September 30
Applicable Temperature Criterion (°C)	T _C	18.0	17.8
Maximum Effluent Temp (°C)	T _E *	21.0	
Minimum Stream Flow (cfs)	Q _R *	0.1	1 ⁺
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E	0.22	0.22
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E	0.34	
Dilution Ratio with 100% of stream flow	S**	1	
Human Use Allowance (°C)	HUA _{PS}	0.18	
Calculated Change in River Temperature under Current Operations (°C)	ΔT _R **	2.3	
Current Thermal Load (gcals/day)	CL**	2.5	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	0.2	0.08
Load reduction needed (gcals/day)		2.3	
Load reduction needed (%)		92%	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	18.2	
Maximum Allowable Effluent Flow to meet WLA (MGD)	Q _{WLA} ****	0.004	

^{*} Measured data

^{**} Calculated data

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table.

^{****} Calculated maximum effluent discharge flow that would meet the WLA, assuming maximum effluent temperature and minimum stream flows as presented in this table.

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

^{++ 2001} WHS TMDL was based on Wishart Creek as the receiving stream

Table C-3. Input parameters and results of Reasonable Potential Analysis for the Parkdale Wastewater Treatment Plant.

Variables indicated in the second column of this table refer to variables used in Equations 3-6 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the WLAs which apply during the critical period before and after the facility's upgrade (included in Table 13 of the TMDL document).

Parkdale WWTP: Trout Creek as receiving stream	1			
	Variable	Current Facility	After Upgrade	2001 TMDL
Fish Use Designation		Salmon & Trout Re	earing & Migration	
Critical period		May 1-Sept	ember 30	June 1-September 30
Applicable Temperature Criterion (°C)	T _C	18.0	18.0	17.8
Maximum Effluent Temp (°C)	T _E *	20.8	20.8	
Minimum Stream Flow (cfs)	Q _R *	2.5	2.5	1+
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E	0.10	0.08	0.10
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E	0.15	0.12	
Dilution Ratio with 100% of stream flow	S**	17	21	
Human Use Allowance (°C)	HUA_{PS}	0.18	0.18	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.16	0.13	
Current Thermal Load (gcals/day)	CL**	1.1	0.8	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	1.2	1.2	0.10
Load reduction needed to meet WLA (gcals/day, %)				
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	21.1#	21.8#	

^{*} Measured data

^{**} Calculated data

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table.

[#] When effluent temperatures are greater than 21°C, a thermal plume analysis is required during permit renewal to prevent or minimize adverse effects to salmonids within the mixing zone (OAR 340-041-0053(2)(d)).

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

Table C-4. Input parameters and results of Reasonable Potential Analysis for the East Fork Hood River cumulative effects analysis. Variables indicated in the second column of this table refer to variables used in Equations 3-5 in the 2018 WHS TMDL Revision.

East Fork Hood River Cumulative Effects Analysis	S				
	Variable	Before Parkdale	WWTP Upgrade	After Parkdale \	WWTP Upgrade
		May 16-October 14	October 15-May 15	May 16-October 14	October 15-May 15
Fish Use Designation		Salmon & Trout Rearing & Migration	Salmon & Steelhead Spawning	Salmon & Trout Rearing & Migration	Salmon & Steelhead Spawning
Critical period			May 1-Sept	tember 30	
Applicable Temperature Criterion (°C)	T _C	18.0	13.0	18.0	13.0
Maximum Effluent Temp (°C)	T _E *	20.9	20.9	20.9	20.9
Minimum Stream Flow (cfs)	Q _R *	42	112	42	112
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E	0.32	0.32	0.30	0.30
Effluent Flow (avg. dry-weather design flow) (cfs)	Q_{E}	0.50	0.50	0.46	0.46
Dilution Ratio with 100% of stream flow	S**	86	227	91	242
Human Use Allowance (°C)	HUA _{PS}	0.18	0.18	0.18	0.18
Calculated Change in River Temperature under Current Operations (°C)	ΔT _R **	0.03	0.03	0.03	0.03
Current Thermal Load (gcals/day)	CL**	3.5	9.6	3.3	9.0
Wasteload Allocation Thermal Load (gcals/day)	WLA**	19	50	19	50

Measured data

Calculated data

Table C-5. Input parameters and results of Reasonable Potential Analysis for the Diamond Fruit Growers Odell facility.

Variables indicated in the second column of this table refer to variables used in Equations 3-6 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the most stringent WLA which apply during the critical period (included in Table 13 of the TMDL document). Results from the Odell Creek cumulative effects analysis are included in this table and show the less stringent WLA for this facility associated with that analysis.

Diamond-Odell facility: McGuire Creek as received	ing strear	n (permi	tted discl	narge) ((Scenario	6)										
	Variable*	Jan	Feb	Mar	Apr 1-14	Apr 15-30	М	lay	June [^]	July^	Aug	Sept	Oct	Nov	Dec	2001 TMDL
Fish Use Designation					•		Core C	old Water H	Habitat				•			
Critical period							ı	April 15-Sep	tembe	r 30						May 1 - Sept 14
Applicable Temperature Criterion (°C)	T _C		16.	0				16.	0					16.0		17.8
Maximum Effluent Temp (°C)	T _E *	21.7	18.3	17.8	16.7	16.7	17	7.2	18.3	18.3	19.4	21.1	22.2	20.0	18.3	
Minimum Stream Flow (cfs)	Q _R *		1.0	3				1.6	3					1.6		4+
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E		0.0	3				0.0	3					0.03		0.03
Effluent Flow (avg. dry-weather design flow) (cfs)	Q_{E}		0.0	5				0.0	5					0.05		
Dilution Ratio with 100% of stream flow	S**		35	5				35	5					35		
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A			0.1	8				N/A	N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.16	0.06	0.05	0.02	0.02			0.06	0.06	0.10	0.14	0.17	0.11	0.06	
Current Thermal Load (gcals/day)	CL**	0.6	0.3	0.2	0.1	0.1	0.1		0.3	0.3	0.4	0.6	0.7	0.5	0.3	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	0.7	0	.7	0.7	0.7	0.7	0.7	N/A	N/A	N/A	0.32
Load reduction needed to meet WLA (gcals/day, %)		N/A	N/A	N/A	N/A		-						N/A	N/A	N/A	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A	N/A	N/A			22.4	4#				N/A	N/A	N/A	
From Odell Creek cumulative effects analysis (f	rom Table	C-7)														
·	Variable	Jan	Feb	Mar	Apr 1-14	Apr 15-30	May 1-15	May 16-31	June [^]	July^	Aug	Sept	Oct	Nov	Dec	
Fish Use Designation			Salm	on & St	eelhead Sp	pawning				Co	re Cold	Water Ha	bitat			
Critical period							Ä	April 15-Sep	tembe	r 30						
Applicable Temperature Criterion (°C)	T _C		13.	.0		13	.0			16.0				16.0		
Minimum Stream Flow (cfs)	Q _R *	7.1	8.9	11.2	14.1	12.0	11.6	9.8	8.9	8.9	9.1	8.5	4.6	3.2	5.6	
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A			0.0	9				N/A	N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.06	0.03	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.03	0.06	0.06	0.02	
Current Thermal Load (gcals/day)	CL**	1.0	0.6	0.5	0.4	0.4	0.5	0.1	0.3	0.3	0.4	0.6	0.7	0.5	0.3	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	2.7	2.6	2.2	2.0	2.0	2.0	1.9	N/A	N/A	N/A	
Load reduction needed to meet WLA (gcals/day, %)		N/A	N/A	N/A	N/A								N/A	N/A	N/A	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A	N/A	N/A		O.	AR 340-041	-0053(2	2)(d) #			N/A	N/A	N/A	

^{*} Measured data; ** Calculated data,

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table.

[^] This plant does not discharge in June or July, but a wasteload allocation was calculated since they are allowed to discharge all months in their permit.

[#] When effluent temperatures are greater than 21°C, a thermal plume analysis is required during permit renewal to prevent or minimize adverse effects to salmonids within the mixing zone (OAR 340-041-0053(2)(d)). In the CEA, the calculated maximum allowable effluent temperature under allocated conditions is greater than is physically possible to generate at the facility (>32.6*C). The calculated value of T_{WLA} does not allow a facility to discharge effluent at these high temperatures; T_{WLA} needs to comply with thermal plume limitations in this OAR.

Table C-6. Input parameters and results of Reasonable Potential Analysis for the Odell Wastewater Treatment Plant.

Variables indicated in the second column of this table refer to variables used in Equations 3-7 in the 2018 WHS TMDL Revision. Shaded cells indicate variables and values associated with the most stringent WLA for the Odell WWTP; cells in purple apply during the core cold water habitat season and cells in blue apply during the spawning season. The most stringent WLAs for this facility come from the Odell Creek cumulative effects analyses (Scenario 8 with permitted flows for Diamond-Odell or Scenario 10 with cooling water flows for Diamond-Odell); the less stringent WLA associated with the WWTP discharge alone into Odell Creek (Scenario 9) is shown here for comparison. Scenario 8 is included in Table 13 of the TMDL document and Scenario 10 is included in Table 14 of the TMDL document.

From Odell Creek cumulative effects analyses	(Scenario	8 [Dia	mond-C	Odell p	ermitte	d flow	s] and	Scena	rio 10	[Diam	ond-Od	lell cooli	ng wate	r flows])^^	
	Variable	Jan	Feb	Mar	Apr 1-14	Apr 15-30	May 1-15	May 16-31	June	July	Aug	Sept	Oct	Nov	Dec	2001 TMDL
Fish Use Designation			Stee	elhead S	Spawni	ng				С	ore Col	d Water H	Habitat			
Critical period								April 15	S-Sep	tember	30					May 1 - Sept 14
Applicable Temperature Criterion (°C)	T _C		13	.0		13	.0			16.0)			16.0		17.8
Maximum Effluent Temp (°C)	T _E *	15.3	14.6	14.8	14.7	15.7	17.4	17.8	19.5	21.5	22.5	22.2	21.5	19.5	16.2	
Minimum Stream Flow (cfs)	Q _R *	7.1	8.9	11.2	14.1	12.0	11.6	9.8	8.9	8.9	9.1	8.5	4.6	3.2	5.6	10 ⁺
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E ^^	0.42					0.42	2				0.42		0.5		
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E ^^		0.6	55					0.65	5				0.65		
Dilution Ratio with 100% of stream flow	S**	12	15	18	23	19	19	16	15	15	15	14	8	6	10	
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A				0.09)			N/A	N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.19	0.11	0.10	0.07	0.14	0.23	0.11	0.24	0.37	0.43	0.44	0.68	0.59	0.02	
Current Thermal Load (gcals/day)	CL**	3.7	2.5	2.9	2.7	4.3	7.0	2.9	5.6	8.7	10.3	9.9	8.7	5.6	0.3	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	2.8	2.7	2.3	2.1	2.1	2.1	2.0	N/A	N/A	N/A	
Load reduction needed to meet WLA (gcals/day)		N/A	N/A	N/A	N/A	1.5	4.3	0.6	3.5	6.6	8.2	7.8	N/A	N/A	N/A	
Load reduction needed to meet WLA (%)		N/A	N/A	N/A	N/A	35%	61%	20%	62%	76%	79%	80%	N/A	N/A	N/A	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A	N/A	N/A	14.8	14.7	17.4	17.3	17.3	17.3	17.3	N/A	N/A	N/A	
Maximum Allowable Effluent Flow (MGD)	Q _{WLA} ****	N/A	N/A	N/A	N/A	0.27	0.16	0.33	0.15	0.10	0.08	0.08	N/A	N/A	N/A	
Odell WWTP alone: Odell Creek as the receivin	g stream (Scena	rio 9)													
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A				0.18	3			N/A	N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.19	0.11	0.10	0.07	0.14	0.23	0.11	0.24	0.37	0.43	0.44	0.68	0.59	0.02	
Current Thermal Load (gcals/day)	CL**	3.7	2.5	2.9	2.7	4.3	7.0	2.9	5.6	8.7	10.3	9.9	8.7	5.6	0.3	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	5.6	5.4	4.6	4.2	4.2	4.3	4.0	N/A	N/A	N/A	0.78
Load reduction needed to meet WLA (gcals/day)		N/A	N/A	N/A	N/A		1.6		1.4	4.5	6.0	5.8	N/A	N/A	N/A	
Load reduction needed to meet WLA (%)		N/A	N/A	N/A	N/A		23%		24%	52%	58%	59%	N/A	N/A	N/A	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A	N/A	N/A	16.5	16.4	18.9	18.6	18.6	18.7	18.5	N/A	N/A	N/A	
Maximum Allowable Effluent Flow (MGD)	Q _{WLA} ****	N/A	N/A	N/A	N/A		0.32		0.31	0.19	0.17	0.16	N/A	N/A	N/A	

Measured data

^{**} Calculated data

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table.

^{****} Calculated maximum effluent discharge flow that would meet the WLA, assuming maximum effluent temperature and minimum stream flows as presented in this table.

Mecause of the relatively insignificant amount of flow from either of the Diamond Odell discharges (permitted or cooling water) relative to the WWTP flow, the WLAs for the Odell WWTP are the same under both Odell Creek cumulative effects analyses (Scenario 8 and Scenario 10).

Table C-7. Input parameters and results of Reasonable Potential Analysis for the Odell Creek cumulative effects analysis.

Variables indicated in the second column of this table refer to variables used in Equations 3-5 in the 2018 WHS TMDL Revision. This analysis assumed the full design flow for the Diamond-Odell fruit facility. Because the thermal effect of the combined discharges (ΔT_R) was greater than the human use allowance, a subsequent analysis was done by splitting the HUA between the two facilities to evaluate the contribution of each facility. Further details for each facility are provided in Table C-5 (Diamond Fruit - Odell facility) and Table C-6 (Odell WWTP)

Odell facility) and Table C-6 (Odell WWTP). Odell Creek Cumulative Effects Analysis (using permitted flows for	Diamond	-Odell)													
	Variable	Jan	Feb	Mar	Apr 1-14	Apr 15-30	May 1-15	May 16-31	June	July	Aug	Sept	Oct	Nov	Dec
Fish Use Designation			Stee	elhead S	Spawn	ing				C	Core Cold	Water H	abitat		
Critical period								April 1	5-Septe	ember	30				
Applicable Temperature Criterion (°C)	T _C		13.	.0		13	3.0			16				16.0	
Maximum Effluent Temp (°C)	T _E *	15.7	14.8	15.0	14.8	15.8	17.4	17.8	19.4	21.3	22.3	22.1	21.5	19.5	16.3
Minimum Stream Flow (cfs)	Q _R *	7.1	8.9	11.2	14.1	12.0	11.6	9.8	8.9	8.9	9.1	8.5	4.6	3.2	5.6
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E		0.4	5					0.45					0.45	
Effluent Flow (avg. dry-weather design flow) (cfs)	Q_{E}		0.7	0					0.70					0.70	
Dilution Ratio with 100% of stream flow	S**	11	14	17	21	18	18	15	14	14	14	13	8	6	9
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A				0.18				N/A	N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.24	0.13	0.12	0.08	0.15	0.25	0.12	0.25	0.38	0.45	0.46	0.72	0.63	0.03
Current Thermal Load (gcals/day)	CL**	4.6	3.1	3.4	3.1	4.8	7.5	3.1	5.8	9.0	10.7	10.4	9.4	6.0	0.5
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	5.6	5.4	4.6	4.2	4.2	4.3	4.1	N/A	N/A	N/A
Odell WWTP (included in Table C-6)															
Maximum Effluent Temp (°C)	T _E *	15.3	14.6	14.8	14.7	15.7	17.4	17.8	19.5	21.5	22.5	22.2	21.5	19.5	16.2
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E		0.4	2					0.42					0.42	
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A				0.09				N/A	N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.19	0.11	0.10	0.07	0.14	0.23	0.11	0.24	0.37	0.43	0.44	0.68	0.59	0.02
Current Thermal Load (gcals/day)	CL**	3.7	2.5	2.9	2.7	4.3	7.0	2.9	5.6	8.7	10.3	9.9	8.7	5.6	0.3
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	2.8	2.7	2.3	2.1	2.1	2.1	2.0	N/A	N/A	N/A
Load reduction needed to meet WLA (gcals/day)		N/A	N/A	N/A	N/A	1.5	4.3	0.6	3.5	6.6	8.2	7.8	N/A	N/A	N/A
Diamond-Odell facility (included in Table C-5)^															
Maximum Effluent Temp (°C)	T _E *	21.7	18.3	17.8	16.7	16.7	17.2	17.2	18.3	18.3	19.4	21.1	22.2	20.0	18.3
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E 0.03 0.03							0.03							
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A 0.09					N/A	N/A	N/A			
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.06	0.03	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.03	0.06	0.06	0.02
Current Thermal Load (gcals/day)	CL**	1.0	0.6	0.5	0.4	0.4	0.5	0.1	0.3	0.3	0.4	0.6	0.7	0.5	0.3
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	2.7	2.6	2.2	2.0	2.0	2.0	1.9	N/A	N/A	N/A
Load reduction needed to meet WLA (gcals/day)		N/A	N/A	N/A	N/A								N/A	N/A	N/A

^{*} Measured data

^{**} Calculated data

[^] This plant does not discharge in June or July, but a wasteload allocation was calculated since they are allowed to discharge all months in their permit.

Table C-8. Input parameters and results of Reasonable Potential Analysis for Mount Hood Forest Products log pond discharge. Variables indicated in the second column of this table refer to variables used in Equations 3-5 in the 2018 WHS TMDL Revision.

Mt. Hood Forest Products log pond: dit	ch as rec	eiving str	eam										
	Variable	January	February	March	April	May	June	July	August	September	October	November	December
Fish Use Designation							Salmon & Tro	out Rearii	ng & Migra	tion			
Critical period								May	1-October	31			
Applicable Temperature Criterion (°C)	T _C		18.0						18.0			18	3.0
Maximum Effluent Temp (°C)	T _E *	7.8	14.4	12.8	12.6			no	discharge			11.0	11.0
Minimum Stream Flow (cfs)	Q _R **	1.6	14.5	1.5	1.6								23.7
Effluent Flow (MGD)	Q _E *	0.01	0.136	0.01	0.001				0.009	0.103			
Effluent Flow (cfs)	Q _E *	0.02	0.21	0.02	0.00				0.01	0.16			
Dilution Ratio with 100% of stream flow	S**	104	70	98	1035							73	150
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A							N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	-0.10	-0.05	-0.08	-0.01							-0.10	-0.05
Current Thermal Load (gcals/day)	CL**	-0.4	-1.9	0.0	0.0							-0.2	-2.7
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A							N/A	N/A
Load reduction needed to meet WLA (gcals/day, %)		N/A	N/A	N/A	N/A							N/A	N/A

^{*} Measured data

^{**} Calculated data

Table C-9. Input parameters and results of Reasonable Potential Analysis for the Terminal Ice and Cold Storage facility.

Variables indicated in the second column of this table refer to variables used in Equations 3-7 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the most stringent WLA which apply during the critical period (Scenario 13, included in Table 13 of the TMDL document). Results from the Neal Creek cumulative effects analysis are included in this table and show the less stringent WLA for this facility associated with that analysis.

Terminal Ice Plant: ditch as receiving stream, with Duckw	all-Pooley	Van H	orn disc	harge	(Scena	rio 13)										
	Variable	Jan	Feb	Mar	April	N	lay	June	July	Aug	Sept	С	Oct	Nov	Dec	2001 TMDL ⁺⁺
Fish Use Designation						S	almon 8	& Trout	Rearing	& Migra	tion					
Critical period							N	/larch 1	-Octobe	er 31						May 1 - Sept 30
Applicable Temperature Criterion (°C)	T _C	18	3.0						18.0					18	3.0	17.8
Minimum Stream Flow (cfs)	Q _R *	0	.0						0.0					0	.0	10 ⁺
Maximum Effluent Temp (°C)	T _E *	20.0	20.0	0.0 20.0 21.1 21.1 20.0 20.0 21.1 21.1 2					19.4	20.0						
Effluent Flow (avg. dry-weather design flow) (MGD)	Q_{E}	0.	12	0.12										0.	12	0.12
Effluent Flow (avg. dry-weather design flow) (cfs)	Q_{E}	0.19												0.	19	
Dilution Ratio with 100% of stream flow	S**		1						1					,	l	
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A						0.09					N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	2.0	2.0	2.0	3.1	3	3.1	2.0	2.0	3.1	3.1	2	.0	1.4	2.0	
Current Thermal Load (gcals/day)	CL**	0.9	0.9	0.9	1.4	1	.4	0.9	0.9	1.4	1.4	0	.9	0.6	0.9	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	0.04	0.04	0.	.04	0.04	0.04	0.04	0.04	0.	.04	N/A	N/A	0.79
Load reduction needed to meet WLA (gcals/day)		N/A	N/A	0.9	1.4	1	.4	0.9	0.9	1.4	1.4	0	.9	N/A	N/A	
Load reduction needed to meet WLA (%)		N/A	N/A	96%	97%	97	7%	96%	96%	97%	97%	96	6%	N/A	N/A	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A						18.0					N/A	N/A	
Maximum Allowable Effluent Flow (MGD)	Q _{WLA}	N/A	N/A						##					N/A	N/A	
From Neal Creek cumulative effects analysis (from Table	C-14)															
		Jan	Feb	Mar	April	May 1-15	May 16-31	June	July	Aug	Sept	Oct 1-14	Oct 15-31	Nov	Dec	
Fish Use Designation		Salr	non & S	teelhead	d Spaw	ning	S	almon 8		Rearing 8		on	S	Spawning	9	
Critical period							ś			October :	31					
Applicable Temperature Criterion (°C)	T _C		13	3.0		13.0			1	18.0			13.0	13	3.0	
Minimum Stream Flow (cfs)	Q _R *	12.3	15.8	34.1	37.6	29.6	28.0	20.4	15.7	13.7	17.6	13.4	9.5	6.6	9.1	10 ⁺
Dilution Ratio with 100% of stream flow	S**	67	86	185	203	160	152	111	86	75	96	73	52	37	50	
Human Use Allowance	HUA _{PS}	N/A	N/A	N/A	N/A				C	0.045				N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.10	0.08	0.04	0.04	0.05	0.02	0.02	0.02	0.04	0.03	0.03	0.13	0.18	0.14	
Current Thermal Load (gcals/day)	CL**	3.2	3.2	3.2	3.7	3.7	1.4	0.9	0.9	1.4	1.4	0.9	3.2	2.9	3.2	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.7	1.5	2.0	1.5	1.1	N/A	N/A	0.79

^{*} Measured data

^{**} Calculated data

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table.

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

^{++ 2001} WHS TMDL was based on Neal Creek as the receiving stream

^{##} Because the ditch is effluent dominated, effluent temperatures need to be less than Twla regardless of effluent flow.

Table C-10. Input parameters and results of Reasonable Potential Analysis for the Duckwall-Pooley Fruit Company Van Horn facility.

Variables indicated in the second column of this table refer to variables used in Equations 3-7 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the most stringent WLA which apply during the critical period (Scenario 20, included in Table 13 of the TMDL document). Results from the Neal Creek cumulative effects analysis are included in this table and show the less stringent WLA for this facility associated with that analysis.

Duckwall-Pooley Van Horn facility: ditch as receiving s	tream, wi	ith Ter	minal lo	e disc	harge	(Scen	ario 20)								
	Variable	Jan	Feb	Mar	April	M	1 ay	June	July	Aug	Sept	С	Oct	Nov	Dec	2001 TMDL++
Fish Use Designation						Sa	lmon &	Trout F	Rearing	a Mig	ration			l .		
Critical period							Ma	rch 1-C	Octobe	r 31						May 1 - Sept 30
Applicable Temperature Criterion (°C)	T _C	1	8.0					18	3.0					1	8.0	17.8
Minimum Stream Flow (cfs)	Q _R *	(0.0					0	.0					C	0.0	10 ⁺
Maximum Effluent Temp (°C)	T _E *	20.6	20.9	20.9 19.7 22.4 20.9 21.9 22.5 26.6 25.1 22.6						2.6	23.1	24.3				
Effluent Flow (avg. dry-weather design flow) (MGD)	Q_{E}	0.04									0	.04	0.50			
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E	0.06										0	.06			
Dilution Ratio with 100% of stream flow	S**		1 1												1	
Human Use Allowance (°C)	HUA _{PS}	HUA _{PS} 0.09 0.09									0	.09				
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	2.6	2.9 1.7 4.4 2.9 3.9 4.5 8.6 7.1 4.6						5.1	6.3						
Current Thermal Load (gcals/day)	CL**	0.4	0.4	0.3	0.7 0.4 0.6 0.7 1.3 1.1 0.7).7	0.8	1.0				
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A			N/A	N/A	0.78								
Load reduction needed to meet WLA (gcals/day)		N/A	N/A	0.2	0.7	C).4	0.6	0.7	1.3	1.1	0	.7	N/A	N/A	
Load reduction needed to meet WLA (%)		N/A							N/A	N/A						
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A					18	3.0					N/A	N/A	
Maximum Allowable Effluent Flow (MGD)	Q_{WLA}	N/A	N/A					#	#					N/A	N/A	
From Neal Creek cumulative effects analysis (from Tab	le C-14)															
		Jan	Feb	Mar	April	May 1-15	May 16-31	June	July	Aug	Sept	Oct 1-14	Oct 15-31	Nov	Dec	
Fish Use Designation		Salm	non & St	teelhea	d Spav	wning	Salm	non & T	rout R	earing	& Migra	ation		Spawni	ng	
Critical period								Ma	ay 1-O	ctober	31		•			
Applicable Temperature Criterion (°C)	T _C		13	3.0		13.0			18	3.0			13.0	1:	3.0	
Minimum Stream Flow (cfs)	Q _R *	12.3	15.8	34.1	37.6	29.6	28.0	20.4	15.7	13.7	17.6	13.4	9.5	6.6	9.1	10 ⁺
Dilution Ratio with 100% of stream flow	S**	200	256	552	608	479	453	330	255	222	285	217	154	108	148	
Human Use Allowance	HUA _{PS}	N/A	N/A	N/A N/A N/A 0.045									N/A	N/A		
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.04	0.03	0.01	0.02	0.02	0.00	0.01	0.02	0.04	0.02	0.02	0.06	0.09	0.08	
Current Thermal Load (gcals/day)	CL**	1.2	1.2	1.0	1.4	1.2	-0.1	0.6	0.7	1.3	1.1	0.7	1.4	1.5	1.7	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.7	1.5	1.9	1.5	1.1	N/A	N/A	0.78

^{*} Measured data

^{**} Calculated data

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table.

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

^{++ 2001} WHS TMDL was based on Neal Creek as the receiving stream

^{##} Because the ditch is effluent dominated, effluent temperatures need to be less than T_{WLA} regardless of effluent flow.

Table C-11. Input parameters and results of Reasonable Potential Analysis for the Diamond Fruit Growers Central facility.

Variables indicated in the second column of this table refer to variables used in Equations 3-7 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the most stringent WLA which apply during the critical period (included in Table 13 of the TMDL document). Results from the Neal Creek cumulative effects analysis are included in this table and show the less stringent WLA for this facility associated with that analysis.

Diamond-Central facility: Lenz Creek as receiving stre	Variable	Jan	Feb	Mar	April		lav	lunc	luk.	Aug	Cont		Oct	Nov	Dec	2001 TMDL
	variable	Jan	reb	iviai	April		,		July	_	Sept		JCl	INOV	Dec	2001 TNIDL
Fish Use Designation						Sa I	lmon &			•						
Critical period								M		October	· 31					May 1 - Sept 30
Applicable Temperature Criterion (°C)	T _C			3.0					1	18.0				18.	.0	17.8
Minimum Stream Flow (cfs)	Q _R *	0.7	0.2	0.5	0.4	().4	0.2	0.0	0.1	0.0	(0.0	0.0	0.0	1+
Maximum Effluent Temp (°C)	T _E *	12.8	11.4	12.6	17.9	1	7.5	18.3	18	21.0	19.7	1:	9.3	15.3	19.0	
Effluent Flow (avg. dry-weather design flow) (MGD)	Q_{E}	0.09						(0.09				0.0	9	0.09	
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E		0.	14					(0.14				0.1	4	
Dilution Ratio with 100% of stream flow	S**	6	2	5	4		4	2	1	1	1		1	1	1	
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A				(0.18				N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	-0.84	-2.8	-1.2	-0.03	-0	.14	0.13	-0.3	2.1	1.3	1	1.3	-2.7	1.0	
Current Thermal Load (gcals/day)	CL**	-1.8	-2.2	-1.8	0.0	-().2	0.1	-0.1	1.0	0.6	C).4	-0.9	0.3	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	().2	0.1	0.1	0.1	0.1	C	0.1	N/A	N/A	0.08
Load reduction needed to meet WLA (gcals/day)		N/A	N/A	N/A	N/A					0.9	0.5	C	0.4	N/A	N/A	
Load reduction needed to meet WLA (%)		N/A	N/A	N/A	N/A					91%	86%		6%	N/A	N/A	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A	N/A	N/A	1	8.7	18.4	18.0		18.0	1	8.0	N/A	N/A	
Maximum Allowable Effluent Flow (mgd)	Q _{WLA} ****	N/A	N/A	N/A	N/A				##	0.002	##	#	##	N/A	N/A	
From Neal Creek cumulative effects analysis (from Tak	ole C-14)															
	Variable	Jan	Feb	Mar	April	May 1-15	May 16-31	June	July	Aug	Sept	Oct 1-14	Oct 15-31	Nov	Dec	
Fish Use Designation		Salm	non & S	teelhea	d Spav	vning	Salm	non & T	Trout F	Rearing	& Migrat	tion		Spawning	g	
Critical period								M	lay 1-0	October	· 31					
Applicable Temperature Criterion (°C)	T _C		13	3.0		13.0			1	0.8			13.0	13.	.0	
Minimum Stream Flow (cfs)	Q _R *	12.3	15.8	34.1	37.6	29.6	28.0	20.4	15.7	13.7	17.6	13.4	9.5	6.6	9.1	
Dilution Ratio with 100% of stream flow	S**	89	114	246	271	213	202	147	114	99	127	97	69	48	66	
Human Use Allowance (°C)	HUA _{PS}								0	.045				N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	T _{WLA} **	0.00	-0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.03	0.01	0.01	0.08	0.05	0.09	
Current Thermal Load (gcals/day)	CL**	-0.1	-0.5	-0.1	1.7	0.7	-0.2	0.1	-0.1	1.0	0.6	0.4	2.0	0.8	2.0	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.7	1.5	2.0	1.5	1.1	N/A	N/A	

^{*} Measured data

^{**} Calculated data

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table

^{****} Calculated maximum effluent discharge flow that would meet the WLA, assuming maximum effluent temperature and minimum stream flows as presented in this table.

^{###} Because the ditch is effluent dominated, effluent temperatures need to be less than Twla regardless of effluent flow.

Table C-12. Input parameters and results of Reasonable Potential Analysis for the Duckwall-Pooley Fruit Company Odell facility.

Variables indicated in the second column of this table refer to variables used in Equations 3-6 in the 2018 WHS TMDL Revision. Shaded cells in grey indicate variables and values associated with the most stringent WLA which apply during the critical period (included in Table 13 of the TMDL document). Results from the Neal Creek cumulative effects analysis are included in this table and show the less stringent WLA for this facility associated with that analysis.

Duckwall-Pooley Odell facility: Lenz Creek as re-	ceiving st	ream														
	Variable	Jan	Feb	Mar	April	l N	⁄lay	June	July	Aug	Sept	C	Oct	Nov	Dec	2001 TMDL
Fish Use Designation			Salmon & Trout Rearing & Migration													
Critical period			May 1-October 31												May 1 - Sept 30	
Applicable Temperature Criterion (°C)**	T _C	18.0							1	8.0		18	3.0	17.8		
Minimum Stream Flow (cfs)	Q _R *	0.9	0.3	0.6	0.5	().5	0.3	0.1	0.2	0.2	0).1	0.1	0.1	1+
Maximum Effluent Temp (°C)	T _E *	10.0	11.3	11.8	14.8	1	6.6	17.0	16.7	16.4	15.9	14	4.5	13.1	10.7	
Effluent Flow (avg. dry-weather design flow) (MGD)	Q_{E}		0.2	25					0	.25				0.25		0.25
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E		0.3	39					0		0.39					
Dilution Ratio with 100% of stream flow	S**	3	2	3	2		2	2	1	2	1		1	1	1	
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A	0.18							N/A	N/A		
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	-2.5	-3.6	-2.4	-1.4	-c	0.60	-0.55	-1.0	-1.1	-1.4	-2	2.7	-3.9	-5.9	
Current Thermal Load (gcals/day)	CL**	-7.6	-6.3	-5.9	-3.0	-	1.3	-0.9	-1.2	-1.5	-2.0	-3	3.3	-4.6	-6.9	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	().4	0.3	0.2	0.3	0.2	0).2	N/A	N/A	0.08
Load reduction needed to meet WLA (gcals/day, %)		N/A	N/A	N/A	N/A									N/A	N/A	
Maximum Allowable Effluent Temperature (°C)	T _{WLA} ***	N/A	N/A	N/A	N/A	1	8.4	18.3	18.2	18.3	18.3	18	8.2	N/A	N/A	
From Neal Creek cumulative effects analysis (fro	m Table (C-14)														
·	Variable	Jan	Feb	Mar	April	May 1-15	May 16-31	June	July	Aug	Sept	Oct 1-14	Oct 15-31	Nov	Dec	
Fish Use Designation		Salm	on & St	eelhead	Spawn	ing	Saln				& Migra	tion		Spawnin	ng	
Critical period							,	M	•	October	31					
Applicable Temperature Criterion (°C)**	T _C		13	.0		13.0			18	8.0		1		13.0		
Minimum Stream Flow (cfs)	Q _R *	12.3	15.8	34.1	37.6	29.6	28.0	20.4	15.7	13.7	17.6	13.4	9.5	6.6	9.1	
Dilution Ratio with 100% of stream flow	S**	33	42	89	98	77	73	54	42	36	46	36	26	18	25	
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A				0.	045				N/A	N/A	
Calculated Change in Creek Temperature under Current Operations (°C)	T _{WLA} **	-0.09	-0.04	-0.01	0.02	0.04	-0.02	-0.02	-0.03	-0.04	-0.05	-0.10	0.04	0.01	-0.09	
Current Thermal Load (gcals/day)	CL**	-2.8	-1.6	-1.1	1.7	2.9	-1.3	-0.9	-1.23	-1.5	-2.0	-3.3	1.0	0.1	-2.2	
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.8	1.6	2.0	1.5	1.1	N/A	N/A	

^{*} Measured data

^{**} Calculated data

^{+ 25%} of this steam flow was used in the 2001 WLA calculations

^{***} Calculated maximum effluent temperature that would meet the WLA, assuming design flows and minimum stream flows as presented in this table

Table C-13. Input parameters and results of Reasonable Potential Analysis for the Lenz Creek cumulative effects analysis. Variables indicated in the second column of this table refer to variables used in Equations 3-5 in the 2018 WHS TMDL Revision.

Lenz Creek Cumulative Effects Analysis													
	Variable	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Fish Use Designation													
Critical period			May 1-October 31										
Applicable Temperature Criterion (°C)	T _C		18.	0				18.0					
Maximum Effluent Temp (°C)	T _E *	10.7	11.3	12.0	15.6	16.8	17.4	17.0	17.6	16.9	15.8	13.7	12.9
Minimum Stream Flow (cfs)	Q _R *	0.7	0.2	0.5	0.4	0.4	0.2	0.0	0.1	0.0	0.00	0.00	0.00
Effluent Flow (avg. dry-weather design flow) (MGD)	Q _E		0.3	4				0.34					
Effluent Flow (avg. dry-weather design flow) (cfs)	Q _E		0.5	3				0.53					
Dilution Ratio with 100% of stream flow	S**	2	1	2	2	2 1 1 1 1 1						1	1
Human Use Allowance (°C)	HUA _{PS}	N/A	N/A	N/A	N/A	0.18							N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	-3.1	-4.9	-3.1	-1.4	-0.70	-0.45	-1.0	-0.36	-1.0	-2.2	-4.3	-5.1
Current Thermal Load (gcals/day)	CL**	-9.4	-8.6	-7.7	-3.1	-1.5	-0.8	-1.3	-0.5	-1.4	-2.8	-5.5	-6.6
Wasteload Allocation Thermal Load (gcals/day)	WLA**	N/A	N/A	N/A	N/A	0.4	0.3	0.2	0.3	0.2	0.2	N/A	N/A

^{*} Measured data

^{**} Calculated data

Table C-14. Input parameters and results of Reasonable Potential Analysis for the Neal Creek cumulative effects analysis. Variables indicated in the second column of this table refer to variables used in Equations 3-5 in the 2018 WHS TMDL Revision.

Neal Creek Cumulative Effects Analysis																
	Variable	Jan	Feb	Mar	April	May 1-15	May 16-31	June	July	Aug	Sept	Oct 1-14	Oct 15-31	Nov	Dec	
Fish Use Designation		Salm	on & St	eelhead	l Spaw	ning Salmon & Trout Rearing & Migration								Spawning		
Critical period			May 1-October 31													
Applicable Temperature Criterion (°C)	T _C	13.0					13.0 18.0 13.0							13.0		
Maximum Effluent Temp (°C)	T _E *	12.3	14.2	14.1	16.3	17.5	17.9	18.3	18.1	19.2	18.6	17.3	17.0	14.7	14.5	
Minimum Stream Flow (cfs)	Q _R *	12.3	15.8	34.1	37.6	29.6	28.0	20.4	15.7	13.7	17.6	13.4	9.5	6.6	9.1	
Effluent Flow (avg. dry-weather design flow) (MGD)	Q_{E}		0.6	54		0.50								0.654		
Effluent Flow (avg. dry-weather design flow) (cfs)	Q_{E}		1.0)1		0.77								1.01		
Dilution Ratio with 100% of stream flow	S**	13	17	35	38	39	37	27	21	19	24	18	13	8	10	
Human Use Allowance (°C)	HUA	N/A	N/A	N/A	N/A	0.18							N/A	N/A		
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	-0.05	0.07	0.03	0.09	0.11	0.00	0.01	0.00	0.06	0.03	-0.04	0.30	0.23	0.15	
Actual Heat Load (gcals/day)	H _E **	-1.7	3.0	2.7	8.2	8.5	-0.2	0.6	0.2	2.3	1.1	-1.3	7.6	4.2	3.7	
Wasteload Allocation Heat Load (gcals/day)	H _{WLA} **	N/A	N/A	N/A	N/A	13.4	12.7	9.3	7.3	6.4	8.1	6.2	4.5	N/A	N/A	

^{*} Measured data

^{**} Calculated data

Table C-14 (continued). Input parameters and results of Reasonable Potential Analysis for the Neal Creek cumulative effects analysis. Variables indicated in the second column of this table refer to variables used in Equations 3-5 in the 2017 WHS TMDL Revision.

Neal Creek Cumulative Effects Analysis (contin	ued)					1	r				I				
	Variable	Jan	Feb	Mar	April	May 1-15	May 16-31	June	July	Aug	Sept	Oct 1-14	Oct 15-31	Nov	Dec
Fish Use Designation		Salr	non & Ste	elhead S	Spawni	ng	Sa	almon 8	& Trout		Spawnin	g			
Critical period															
Applicable Temperature Criterion (°C)	T _C	13.0				13.0		13	3.0						
Minimum Stream Flow (cfs)	Q _R *	12.3	15.8	34.1	37.6	29.6	3 28.0 20.4 15.7 13.7 17.6 13.4 9.5								9.1
Terminal Ice plant															
Human Use Allowance (°C)	HUA	N/A	N/A	N/A	N/A					0.045				N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.10	0.08	0.04	0.04	0.05	0.02	0.02	0.02	0.04	0.03	0.03	0.13	0.18	0.14
Wasteload Allocation Heat Load (gcals/day)	H _{WLA} **	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.7	1.5	2.0	1.5	1.1	N/A	N/A
Duckwall-Pooley Van Horn plant															
Human Use Allowance (°C)	HUA	N/A	N/A	N/A	N/A					0.045				N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.04	0.03	0.01	0.02	0.02	0.00	0.01	0.02	0.04	0.02	0.02	0.06	0.09	0.08
Wasteload Allocation Heat Load (gcals/day)	H _{WLA} **	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.7	1.5	1.9	1.5	1.1	N/A	N/A
Diamond Central plant			*									•			
Human Use Allowance (°C)	HUA	N/A	N/A	N/A	N/A					0.045				N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	0.00	-0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.03	0.01	0.01	0.08	0.05	0.09
Wasteload Allocation Heat Load (gcals/day)	H _{WLA} **	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.7	1.5	2.0	1.5	1.1	N/A	N/A
Duckwall-Pooley Odell plant#						,	,					,			
Human Use Allowance (°C)	HUA	N/A	N/A	N/A	N/A	0.045								N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	-0.09	-0.04	-0.01	0.02	0.04	-0.02	-0.02	-0.03	-0.04	-0.05	-0.10	0.04	0.01	-0.09
Wasteload Allocation Heat Load (gcals/day)	H _{WLA} **	N/A	N/A	N/A	N/A	3.3	3.1	2.3	1.8	1.6	2.0	1.5	1.1	N/A	N/A
Mt. Hood Forest Products															
Human Use Allowance (°C)	HUA	N/A	N/A	N/A	N/A									N/A	N/A
Calculated Change in Creek Temperature under Current Operations (°C)	ΔT _R **	-0.10	0.02	0.00	0.00									-0.07	-0.05
Wasteload Allocation Heat Load (gcals/day)	H _{WLA} **	N/A	N/A	N/A	N/A									N/A	N/A

^{*} Measured data

^{**} Calculated data