Upper Klamath and Lost River Subbasins Temperature TMDL Development

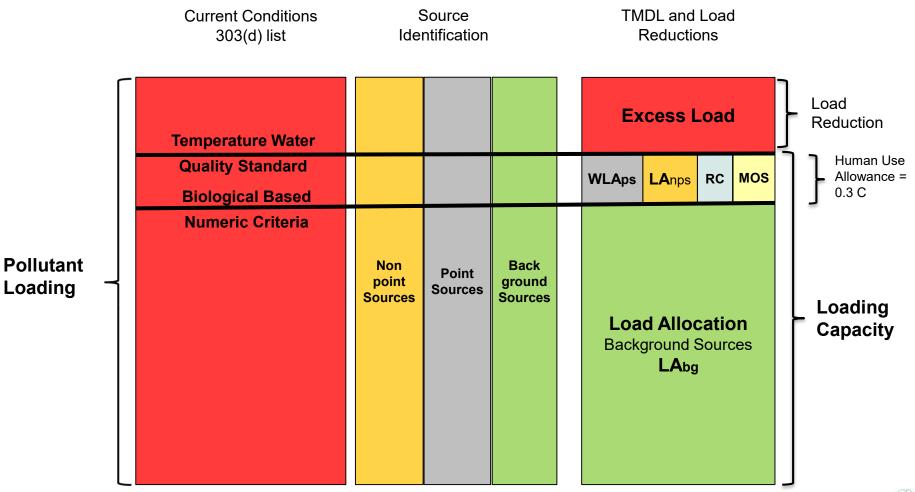
Technical Approach Overview

Temperature TMDL Advisory Committee Aug. 8, 2018

Ryan Michie Senior Water Quality Analyst Oregon Department of Environmental Quality

Presentation Overview

TMDL Elements Stage 1 Waterbodies Stage 2 Waterbodies



TMDL Elements

Waterbody Name and Location Pollutant Water quality standard and beneficial uses Loading Capacity Excess Load Sources or Source categories Wasteload Allocations Load Allocations Margin of Safety Seasonal Variation **Reserve Capacity**

TMDL = WLA_{ps} + LA_{nps} + LA_{bg} + MOS + RC

Stage 1 Temperature Impaired Waters

Subbasin	303(d) ID	Stream Name	Length (River Miles)
Lost River	24458	Antelope Creek	14.1
	2182	Antelope Creek	1
	12738	Barnes Valley Creek	14
	12737	Ben Hall Creek	8.7
	12766	Buck Creek	12.8
	24459	East Branch Lost River	2.4
	2166	Horse Canyon Creek	2.2
	12726	Lapham Creek	4
	12732	Long Branch Creek	4.6
	24463	Lost River	60.6
	1994	North Fork Willow Creek	2.3
	12729	Rock Creek	4.3
Upper Klamath River	12872	Beaver Creek	5.5
	2158	Grizzly Creek	3
	2180	Hoxie Creek	3.6
	2159	Johnson Creek	9.4
	2163	Keene Creek	7.2
	2178	Keene Creek	2.2
	2168	Mill Creek	3.9
	2181	South Fork Keene Creek	3.1
	12815	Spencer Creek	18.9

Stage 1 Waterbodies

No modeling in draft 2010 TMDL

Modeling of management scenarios shows attainment of applicable criteria (e.g. Spencer Creek)

Stage 2 Temperature Impaired Waters

Subbasin	303(d) ID	Stream Name	Length (River Miles)
Lost River	1993	Miller Creek	9.6
Upper Klamath River	1984	Jenny Creek	17.8
	12840	Klamath River	24.1

Stage 1 Waterbodies TMDL Loading Capacity Equation

$LC = (T_C + HUA) \times Q_R \times C_F$

<i>LC</i> =	Loading Capacity (kilocalories/day).	
$T_C =$	The applicable temperature criteria (°C).	
HUA =	The 0.3°C human use allowance allocated to point sources, nonpoint sources, margin of safety, or reserve capacity.	
$Q_R =$	The daily average river flow rate, upstream (cubic feet per second [cfs]).	
<i>C_F</i> =	Conversion factor using cfs: (2,446,622 kcal-s/°C-ft ³ -day) $\frac{1 m^{3}}{35.314 ft^{3}} \times \frac{1000 kg}{1 m^{3}} \times \frac{86,400 sec}{1 day} \times \frac{1 kcal}{1 kg \times 1^{\circ}C} = 2,446,622$	

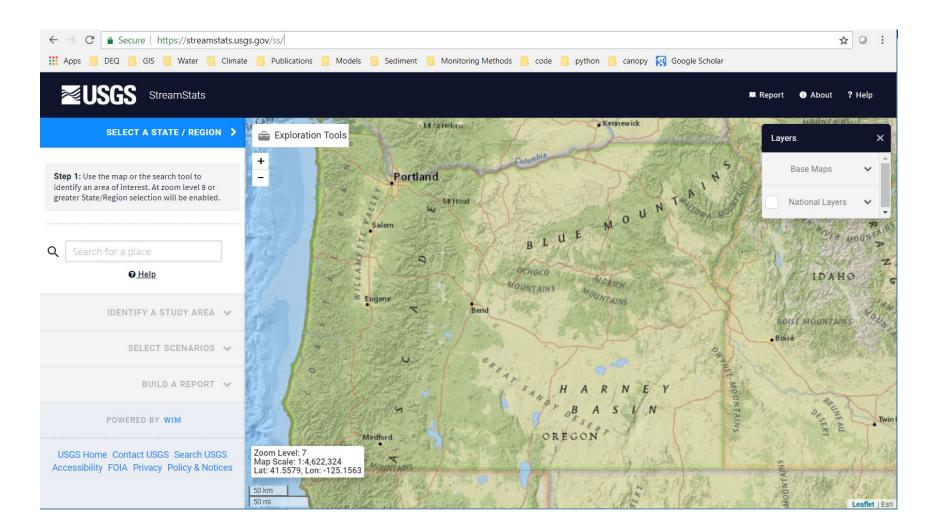
Loading Capacity Stream Flow Ranges

Flow Condition	Statistical Representation	Applicable River Flow Range	Description
Low	7Q10	Q _R < 95 th percentile	Lowest 7-day average flow that occurs (on average) once every 10 years (7Q10).
Dry	95 th percentile	95 th percentile ≤ Q _R < 50 th percentile	Flow that is exceeded approximately 95%, or the vast majority, of the time.
Mild	50 th percentile	50 th percentile $\leq Q_R$ < 25 th percentile	Flow that is considered within the typical or <i>normal</i> range; includes the median flow for a stream.
Moderate	25 th percentile	$25^{\text{th}} \text{ percentile} \le Q_R$ < 10^{th} percentile	Flow that is exceeded only 25% of the time, considered to be <i>above</i> the normal range.
High	10 th percentile	10 th percentile ≤ Q _R < 5 th percentile	Flow that is exceeded only 10% of the time, considered to be <i>far above</i> the normal range; often associated with the rainy season and higher storm flows.
Very High	5 th percentile	$Q_R \ge 5^{th}$ percentile	Flow that is infrequently exceeded; represents very high flows that do not occur often.

Stream Flow Data Sources

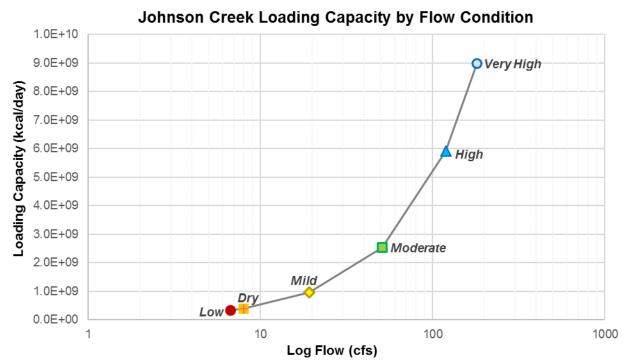
USGS/OWRD Gaged Stream (e.g. Spencer Creek)

Ungaged Sites


- USGS StreamStats Cooper (2005) and Risley et al. (2008)
- Model Outputs (e.g. Lost River CE-QUAL-W2)

Cooper, R. M., 2005, Estimation of Peak Discharges for Rural, Unregulated Streams in Western Oregon: U. S. Geological Survey Scientific Investigations Report 2005-5116, 134 p.

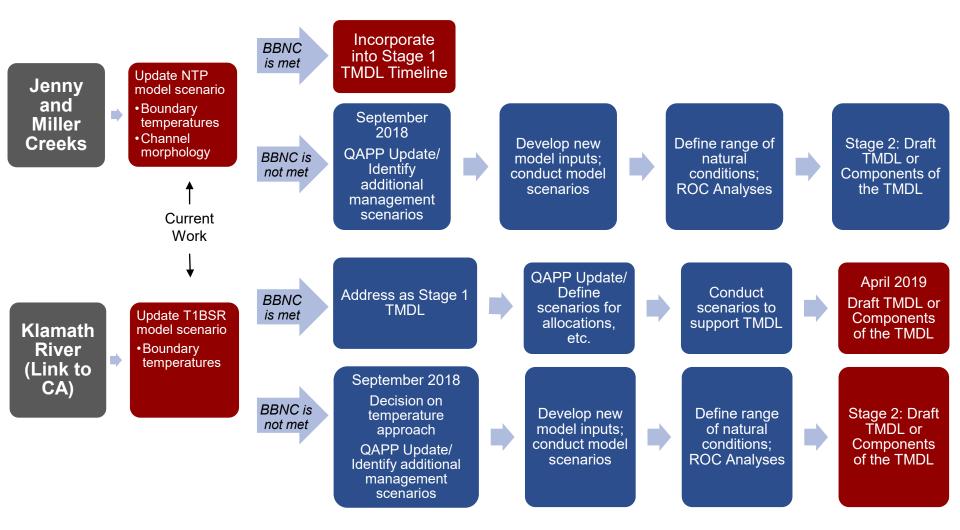
Risley, J., Stonewall, A., and Haluska, T., 2008, Estimating flow-duration and low-flow frequency statistics for unregulated streams in Oregon: U.S. Geological Survey Scientific Investigations Report 2008-5126, 22 p.



USGS StreamStats

Johnson Creek Loading Capacity (Draft)

Flow Condition	Representative Flow Estimate (cfs)	Applicable Flow Range	Thermal Loading Capacity (kcal/day)
Low	7	<8 cfs	3.33E+08
Dry	8	8 cfs to <19 cfs	3.97E+08
Mild	19	19 cfs to <51 cfs	9.54E+08
Moderate	51	51 cfs to <119 cfs	2.54E+09
High	119	119 cfs to <181 cfs	5.91E+09
Very High	181	≥181 cfs	8.99E+09



Stage 1 Waterbodies Next Steps

Allocations and Human Use Allowance Complete TMDL and WQMP Draft Document Advisory Meeting in September

Stage 2 Waterbodies Next Steps

Potential Management Strategies Considered for Revised Model Scenarios

Streamside vegetation (site potential; includes microclimate)

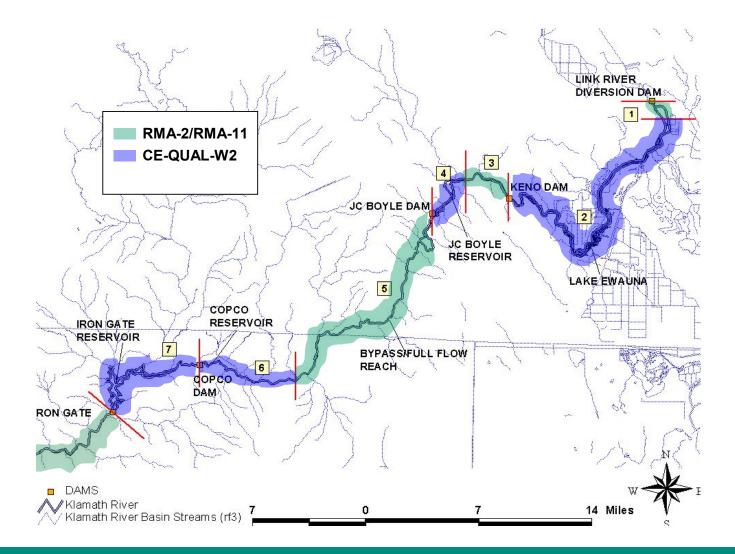
Natural flows for headwaters and tributaries (surface withdrawals returned, no groundwater pumping, no diversions), including associated temperature changes

No dams or modified dam management

Channel morphology improvements

No point sources discharges to waterbody

Climate change factors (e.g. air temperatures)



Thank you!

Extra Slides

Klamath River Model Overview

